File size: 6,402 Bytes
3ef2174 5fd4a73 3ef2174 5fd4a73 59f914c 5fd4a73 47302c3 5fd4a73 47302c3 5fd4a73 47302c3 5fd4a73 47302c3 5fd4a73 47302c3 5fd4a73 47302c3 5fd4a73 47302c3 3ef2174 59f914c 61c2b3f 59f914c ab34609 0bbaf14 47302c3 d221f54 47302c3 59f914c 5fd4a73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
datasets:
- HuggingFaceH4/ultrachat_200k
- openchat/openchat_sharegpt4_dataset
- Open-Orca/SlimOrca
inference: false
model-index:
- name: falcon-rw-1b-chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 35.58
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 61.12
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.51
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 39.62
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.72
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.67
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ericzzz/falcon-rw-1b-chat
name: Open LLM Leaderboard
pipeline_tag: text-generation
---
# 🌟 Falcon-RW-1B-Chat
**Falcon-RW-1B-Chat is a conversational model with 1 billion parameters.** It's a further refinement of the [Falcon-RW-1B-Instruct-OpenOrca](https://huggingface.co/ericzzz/falcon-rw-1b-instruct-openorca), trained on selected data from the [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) and [openchat/openchat_sharegpt4_dataset](https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset) datasets.
**✨Try it out at our [Tiny Chat](https://huggingface.co/spaces/ericzzz/tiny-chat) space running on free-tier hardware!✨**
The underlying Falcon-RW-1B-Instruct-OpenOrca model is built on the [Falcon-RW-1B](https://huggingface.co/tiiuae/falcon-rw-1b), a causal decoder-only model. It has been instruction-finetuned using the [Open-Orca/SlimOrca](https://huggingface.co/datasets/Open-Orca/SlimOrca) dataset.
**🎯 Purpose**
The Falcon-RW-1B-Chat aims to add conversational capabilities to the Falcon-RW-1B-Instruct-OpenOrca model. This initiative is driven by the need for a smaller, open-source, instruction-finetuned, ready-to-use model, suitable for users with limited computational resources, like lower-end consumer GPUs.
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ericzzz__falcon-rw-1b-chat)
| Metric |Value|
|---------------------------------|----:|
|Avg. |37.37|
|AI2 Reasoning Challenge (25-Shot)|35.58|
|HellaSwag (10-Shot) |61.12|
|MMLU (5-Shot) |24.51|
|TruthfulQA (0-shot) |39.62|
|Winogrande (5-shot) |61.72|
|GSM8k (5-shot) | 1.67|
## 📖 Example Code
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_name = "ericzzz/falcon-rw-1b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", torch_dtype=torch.bfloat16
)
chat_history = [
{"role": "user", "content": "Hello!"},
{"role": "assistant", "content": "Hello! How can I assist you today?"},
{"role": "user", "content": "Explain what AI is."},
]
input_ids = tokenizer.apply_chat_template(
chat_history, tokenize=True, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
output_tokens = model.generate(
input_ids,
do_sample=True,
temperature=0.7,
repetition_penalty=1.05,
max_new_tokens=200,
)
output_text = tokenizer.decode(
output_tokens[0][len(input_ids[0]) :], skip_special_tokens=True
)
print(output_text)
```
## ⚠️ Limitations
This model may generate inaccurate or misleading information and is prone to hallucination, creating plausible but false narratives. It lacks the ability to discern factual content from fiction and may inadvertently produce biased, harmful or offensive content. Its understanding of complex, nuanced queries is limited. Users should be aware of this and verify any information obtained from the model.
The model is provided 'as is' without any warranties, and the creators are not liable for any damages arising from its use. Users are responsible for their interactions with the model.
## 📬 Contact
For further inquiries or feedback, please contact at [email protected].
|