File size: 2,055 Bytes
e4d496f 52d0500 e4d496f 52d0500 e4d496f 52d0500 e4d496f 52d0500 e4d496f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
library_name: peft
license: gemma
base_model: google/paligemma2-28b-pt-448
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: PG2-28b-pt-448-COND_GEN
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PG2-28b-pt-448-COND_GEN
This model is a fine-tuned version of [google/paligemma2-28b-pt-448](https://huggingface.co/google/paligemma2-28b-pt-448) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4487
- Accuracy: 0.7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 0.3753 | 0.2222 | 400 | 0.3052 | 0.7 |
| 0.2667 | 0.4444 | 800 | 0.2497 | 0.73 |
| 0.3405 | 0.6667 | 1200 | 0.2686 | 0.685 |
| 0.2995 | 0.8889 | 1600 | 0.2595 | 0.735 |
| 0.0841 | 1.1111 | 2000 | 0.4457 | 0.725 |
| 0.1271 | 1.3333 | 2400 | 0.3524 | 0.72 |
| 0.0906 | 1.5556 | 2800 | 0.4202 | 0.69 |
| 0.0532 | 1.7778 | 3200 | 0.4716 | 0.68 |
| 0.1139 | 2.0 | 3600 | 0.4487 | 0.7 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |