--- library_name: peft license: gemma base_model: google/paligemma2-28b-pt-448 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: PG2-28b-pt-448-COND_GEN results: [] --- # PG2-28b-pt-448-COND_GEN This model is a fine-tuned version of [google/paligemma2-28b-pt-448](https://huggingface.co/google/paligemma2-28b-pt-448) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4487 - Accuracy: 0.7 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3753 | 0.2222 | 400 | 0.3052 | 0.7 | | 0.2667 | 0.4444 | 800 | 0.2497 | 0.73 | | 0.3405 | 0.6667 | 1200 | 0.2686 | 0.685 | | 0.2995 | 0.8889 | 1600 | 0.2595 | 0.735 | | 0.0841 | 1.1111 | 2000 | 0.4457 | 0.725 | | 0.1271 | 1.3333 | 2400 | 0.3524 | 0.72 | | 0.0906 | 1.5556 | 2800 | 0.4202 | 0.69 | | 0.0532 | 1.7778 | 3200 | 0.4716 | 0.68 | | 0.1139 | 2.0 | 3600 | 0.4487 | 0.7 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0