ernestobs7 commited on
Commit
9dc90c7
·
verified ·
1 Parent(s): 8dccf3e

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:98
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: What are some potential health effects that caregivers may experience
13
+ as a result of their caregiving responsibilities?
14
+ sentences:
15
+ - "Who We Are\n\n\nWhat We Do\n\n\nJob Opportunities\n\n\n75th Anniversary\n\n\n\
16
+ \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nHome\n\n\n Health Information\n\
17
+ \ \n\n\n\n\n\n\n\nSHARE: \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nAmyotrophic\
18
+ \ Lateral Sclerosis (ALS)\n\n\n\n\n\n\n\n\n\n\n\nOn this page"
19
+ - 'The U.S. Food and Drug Administration has approved several drugs for ALS that
20
+ may prolong survival, reduce the rate of decline, or help manage symptoms. However,
21
+ there is currently no known treatment that stops or reverses the progression of
22
+ ALS.
23
+
24
+ Early symptoms include:'
25
+ - "1 \nFact Sheet: Taking Care of YOU: Self-Care for \nFamily Caregivers \n \n\
26
+ \ \nFirst, Care for Yourself \nOn an airplane, an oxygen mask descends in front\
27
+ \ of you. What do you \ndo? As we all know, the first rule is to put on your\
28
+ \ own oxygen mask before \nyou assist anyone else. Only when we first help ourselves\
29
+ \ can we \neffectively help others. Caring for yourself is one of the most important\
30
+ \ – \nand one of the most often forgotten – things you can do as a caregiver.\
31
+ \ \nWhen your needs are taken care of, the person you care for will benefit, \n\
32
+ too. \n \nEffects of Caregiving on Health and Well Being \nWe hear this often:\
33
+ \ \"My husband is the person with Alzheimer's, but now \nI'm the one in the hospital!\"\
34
+ \ Such a situation is all too common. \nResearchers know a lot about the effects\
35
+ \ of caregiving on health and well"
36
+ - source_sentence: What are clinical trials and what purpose do they serve in healthcare?
37
+ sentences:
38
+ - NINDS also supports the NIH NeuroBioBank, a collaborative effort involving several
39
+ brain banks across the U.S. that supply investigators with tissue from people
40
+ with neurological and other disorders. Tissue from individuals with ALS is needed
41
+ to help advance critical research on the disease. A single donated brain can make
42
+ a huge impact on ALS research, potentially providing information for hundreds
43
+ of studies. The goal is to increase the availability of, and access to, high quality
44
+ specimens for research to understand the neurological basis of the disease. Prospective
45
+ donors can begin the enrollment process by visiting Learn How to Become a Brain
46
+ Donor.
47
+ - "being. For example, if you are a caregiving spouse between the ages of 66 \n\
48
+ and 96 and are experiencing mental or emotional strain, you have a risk of \n\
49
+ dying that is 63 percent higher than that of people your age who are not \ncaregivers.1\
50
+ \ The combination of loss, prolonged stress, the physical \ndemands of caregiving,\
51
+ \ and the biological vulnerabilities that come with age \nplace you at risk for\
52
+ \ significant health problems as well as an earlier death. \n \nOlder caregivers\
53
+ \ are not the only ones who put their health and well being \nat risk. If you\
54
+ \ are a baby boomer who has assumed a caregiver role for \nyour parents while\
55
+ \ simultaneously juggling work and raising adolescent \nchildren, you face an\
56
+ \ increased risk for depression, chronic illness and a \npossible decline in quality\
57
+ \ of life."
58
+ - 'Learn About Clinical Trials
59
+
60
+ Clinical trials are studies that allow us to learn more about disorders and improve
61
+ care. They can help connect patients with new and upcoming treatment options.
62
+
63
+ Search Clinical Trials'
64
+ - source_sentence: What are some common symptoms experienced by individuals with ALS
65
+ related to muscle function?
66
+ sentences:
67
+ - "• Do you have trouble asking for what you need? Do you feel inadequate \nif you\
68
+ \ ask for help? Why? \n \nSometimes caregivers have misconceptions that increase\
69
+ \ their stress and \nget in the way of good self-care. Here are some of the most\
70
+ \ commonly \nexpressed: \n• I am responsible for my parent's health. \n• If I\
71
+ \ don't do it, no one will. \n• If I do it right, I will get the love, attention,\
72
+ \ and respect I deserve."
73
+ - "possible decline in quality of life. \n \nBut despite these risks, family caregivers\
74
+ \ of any age are less likely than \nnon-caregivers to practice preventive healthcare\
75
+ \ and self-care behavior. \nRegardless of age, sex, and race and ethnicity, caregivers\
76
+ \ report problems \nattending to their own health and well-being while managing\
77
+ \ caregiving \nresponsibilities. They report: \n• sleep deprivation \n• poor\
78
+ \ eating habits \n• failure to exercise \n• failure to stay in bed when ill\
79
+ \ \n• postponement of or failure to make medical appointments ."
80
+ - 'Muscle twitches in the arm, leg, shoulder, or tongue
81
+
82
+ Muscle cramps
83
+
84
+ Tight and stiff muscles (spasticity)
85
+
86
+ Muscle weakness affecting an arm, a leg, or the neck
87
+
88
+ Slurred and nasal speech
89
+
90
+ Difficulty chewing or swallowing
91
+
92
+
93
+ As the disease progresses, muscle weakness and atrophy spread to other parts of
94
+ your body. People with ALS may develop problems with:
95
+
96
+
97
+ Chewing food and swallowing (dysphagia)
98
+
99
+ Drooling (sialorrhea)
100
+
101
+ Speaking or forming words (dysarthria)
102
+
103
+ Breathing (dyspnea)
104
+
105
+ Unintended crying, laughing, or other emotional displays (pseudobulbar symptoms)
106
+
107
+ Constipation
108
+
109
+ Maintaining weight and getting enough nutrients'
110
+ - source_sentence: Why is it important for family caregivers to prioritize their own
111
+ health and well-being?
112
+ sentences:
113
+ - 'Cellular defects
114
+
115
+ Ongoing studies seek to understand the mechanisms that selectively trigger motor
116
+ neurons to degenerate in ALS, which may lead to effective approaches to stop this
117
+ process. Research using cellular culture systems and animal models suggests that
118
+ motor neuron death is caused by a variety of cellular defects, including those
119
+ involved in protein recycling and gene regulation, as well as structural impairments
120
+ of motor neurons. Increasing evidence also suggests that glial support cells and
121
+ inflammation cells of the nervous system may play an important role in ALS.
122
+
123
+ Stem cells'
124
+ - "Identifying Personal Barriers \nMany times, attitudes and beliefs form personal\
125
+ \ barriers that stand in the \nway of caring for yourself. Not taking care of\
126
+ \ yourself may be a lifelong \npattern, with taking care of others an easier option.\
127
+ \ However, as a family \ncaregiver you must ask yourself, \"What good will I\
128
+ \ be to the person I care \nfor if I become ill? If I die?\" Breaking old patterns\
129
+ \ and overcoming \nobstacles is not an easy proposition, but it can be done –\
130
+ \ regardless of \nyour age or situation. The first task in removing personal\
131
+ \ barriers to self-\ncare is to identify what is in your way. For example, \n\
132
+ • Do you feel you have to prove that you are worthy of the care recipient's \n\
133
+ affection? \n• Do you think you are being selfish if you put your needs first?\
134
+ \ \n• Is it frightening to think of your own needs? What is the fear about?"
135
+ - "Caring for a person living with ALS\nAs the person with ALS progresses in their\
136
+ \ disease, they will need more and more help with daily activities. Being a caregiver\
137
+ \ for a person with ALS, while rewarding, can be challenging for the person’s\
138
+ \ loved ones and caregivers. It is important for caregivers take care of themselves\
139
+ \ and to seek support when needed. Free and paid resources are available to provide\
140
+ \ home health care services and support. Visit the organizations listed at the\
141
+ \ end of this article to find support in your area. \nWhat are the latest updates\
142
+ \ on amyotrophic lateral sclerosis (ALS)?"
143
+ - source_sentence: What are some common health issues reported by family caregivers
144
+ while managing their caregiving responsibilities?
145
+ sentences:
146
+ - 'Speech and communication support
147
+
148
+ Speech therapists can help people with ALS learn strategies to speak louder and
149
+ more clearly and help maintain the ability to communicate. Computer-based speech
150
+ synthesizers use eye-tracking devices that allow a person to navigate the web
151
+ and to type on custom screens to communicate. Voice banking is a process sometimes
152
+ used by people with ALS to store their own voice for future use in computer-based
153
+ speech synthesizers.
154
+
155
+ A brain-computer interface (BCI) is a system that allows individuals to communicate
156
+ or control equipment such as a wheelchair using only brain activity. Researchers
157
+ are developing more efficient, mobile BCIs for people with severe paralysis and/or
158
+ visual impairments.
159
+
160
+ Support for nutrition, breathing, and feeding'
161
+ - 'Consider participating in a clinical trial so clinicians and scientists can learn
162
+ more about ALS. Clinical research uses human study participants to help researchers
163
+ learn more about a disorder and perhaps find better ways to safely detect, treat,
164
+ or prevent disease.
165
+
166
+ All types of study participants are needed—those who are healthy or may have an
167
+ illness or disease—of all different ages, sexes, races, and ethnicities to ensure
168
+ that study results apply to as many people as possible, and that treatments will
169
+ be safe and effective for everyone who will use them.
170
+
171
+ For information about participating in clinical research visit NIH Clinical Research
172
+ Trials and You. Learn about clinical trials currently looking for people with ALS at Clinicaltrial.gov.'
173
+ - "possible decline in quality of life. \n \nBut despite these risks, family caregivers\
174
+ \ of any age are less likely than \nnon-caregivers to practice preventive healthcare\
175
+ \ and self-care behavior. \nRegardless of age, sex, and race and ethnicity, caregivers\
176
+ \ report problems \nattending to their own health and well-being while managing\
177
+ \ caregiving \nresponsibilities. They report: \n• sleep deprivation \n• poor\
178
+ \ eating habits \n• failure to exercise \n• failure to stay in bed when ill\
179
+ \ \n• postponement of or failure to make medical appointments ."
180
+ pipeline_tag: sentence-similarity
181
+ library_name: sentence-transformers
182
+ metrics:
183
+ - cosine_accuracy@1
184
+ - cosine_accuracy@3
185
+ - cosine_accuracy@5
186
+ - cosine_accuracy@10
187
+ - cosine_precision@1
188
+ - cosine_precision@3
189
+ - cosine_precision@5
190
+ - cosine_precision@10
191
+ - cosine_recall@1
192
+ - cosine_recall@3
193
+ - cosine_recall@5
194
+ - cosine_recall@10
195
+ - cosine_ndcg@10
196
+ - cosine_mrr@10
197
+ - cosine_map@100
198
+ model-index:
199
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
200
+ results:
201
+ - task:
202
+ type: information-retrieval
203
+ name: Information Retrieval
204
+ dataset:
205
+ name: Unknown
206
+ type: unknown
207
+ metrics:
208
+ - type: cosine_accuracy@1
209
+ value: 0.9166666666666666
210
+ name: Cosine Accuracy@1
211
+ - type: cosine_accuracy@3
212
+ value: 1.0
213
+ name: Cosine Accuracy@3
214
+ - type: cosine_accuracy@5
215
+ value: 1.0
216
+ name: Cosine Accuracy@5
217
+ - type: cosine_accuracy@10
218
+ value: 1.0
219
+ name: Cosine Accuracy@10
220
+ - type: cosine_precision@1
221
+ value: 0.9166666666666666
222
+ name: Cosine Precision@1
223
+ - type: cosine_precision@3
224
+ value: 0.3333333333333333
225
+ name: Cosine Precision@3
226
+ - type: cosine_precision@5
227
+ value: 0.19999999999999998
228
+ name: Cosine Precision@5
229
+ - type: cosine_precision@10
230
+ value: 0.09999999999999999
231
+ name: Cosine Precision@10
232
+ - type: cosine_recall@1
233
+ value: 0.9166666666666666
234
+ name: Cosine Recall@1
235
+ - type: cosine_recall@3
236
+ value: 1.0
237
+ name: Cosine Recall@3
238
+ - type: cosine_recall@5
239
+ value: 1.0
240
+ name: Cosine Recall@5
241
+ - type: cosine_recall@10
242
+ value: 1.0
243
+ name: Cosine Recall@10
244
+ - type: cosine_ndcg@10
245
+ value: 0.9692441461309548
246
+ name: Cosine Ndcg@10
247
+ - type: cosine_mrr@10
248
+ value: 0.9583333333333334
249
+ name: Cosine Mrr@10
250
+ - type: cosine_map@100
251
+ value: 0.9583333333333334
252
+ name: Cosine Map@100
253
+ ---
254
+
255
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
256
+
257
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
258
+
259
+ ## Model Details
260
+
261
+ ### Model Description
262
+ - **Model Type:** Sentence Transformer
263
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
264
+ - **Maximum Sequence Length:** 512 tokens
265
+ - **Output Dimensionality:** 1024 dimensions
266
+ - **Similarity Function:** Cosine Similarity
267
+ <!-- - **Training Dataset:** Unknown -->
268
+ <!-- - **Language:** Unknown -->
269
+ <!-- - **License:** Unknown -->
270
+
271
+ ### Model Sources
272
+
273
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
274
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
275
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
276
+
277
+ ### Full Model Architecture
278
+
279
+ ```
280
+ SentenceTransformer(
281
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
282
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
283
+ (2): Normalize()
284
+ )
285
+ ```
286
+
287
+ ## Usage
288
+
289
+ ### Direct Usage (Sentence Transformers)
290
+
291
+ First install the Sentence Transformers library:
292
+
293
+ ```bash
294
+ pip install -U sentence-transformers
295
+ ```
296
+
297
+ Then you can load this model and run inference.
298
+ ```python
299
+ from sentence_transformers import SentenceTransformer
300
+
301
+ # Download from the 🤗 Hub
302
+ model = SentenceTransformer("ernestobs7/caregiver-ft-v0")
303
+ # Run inference
304
+ sentences = [
305
+ 'What are some common health issues reported by family caregivers while managing their caregiving responsibilities?',
306
+ 'possible decline in quality of life. \n \nBut despite these risks, family caregivers of any age are less likely than \nnon-caregivers to practice preventive healthcare and self-care behavior. \nRegardless of age, sex, and race and ethnicity, caregivers report problems \nattending to their own health and well-being while managing caregiving \nresponsibilities. They report: \n• sleep deprivation \n• poor eating habits \n• failure to exercise \n• failure to stay in bed when ill \n• postponement of or failure to make medical appointments .',
307
+ 'Consider participating in a clinical trial so clinicians and scientists can learn more about\xa0ALS.\xa0Clinical research uses human study participants to help researchers learn more about a disorder and perhaps find better ways to safely detect, treat, or prevent disease.\nAll types of study participants are needed—those who are healthy or may have an illness or disease—of all different ages, sexes, races, and ethnicities to ensure that study results apply to as many people as possible, and that treatments will be safe and effective for everyone who will use them.\nFor information about participating in clinical research visit\xa0NIH Clinical Research Trials\xa0and You. Learn about clinical trials\xa0currently looking for people with\xa0ALS\xa0at\xa0Clinicaltrial.gov.',
308
+ ]
309
+ embeddings = model.encode(sentences)
310
+ print(embeddings.shape)
311
+ # [3, 1024]
312
+
313
+ # Get the similarity scores for the embeddings
314
+ similarities = model.similarity(embeddings, embeddings)
315
+ print(similarities.shape)
316
+ # [3, 3]
317
+ ```
318
+
319
+ <!--
320
+ ### Direct Usage (Transformers)
321
+
322
+ <details><summary>Click to see the direct usage in Transformers</summary>
323
+
324
+ </details>
325
+ -->
326
+
327
+ <!--
328
+ ### Downstream Usage (Sentence Transformers)
329
+
330
+ You can finetune this model on your own dataset.
331
+
332
+ <details><summary>Click to expand</summary>
333
+
334
+ </details>
335
+ -->
336
+
337
+ <!--
338
+ ### Out-of-Scope Use
339
+
340
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
341
+ -->
342
+
343
+ ## Evaluation
344
+
345
+ ### Metrics
346
+
347
+ #### Information Retrieval
348
+
349
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
350
+
351
+ | Metric | Value |
352
+ |:--------------------|:-----------|
353
+ | cosine_accuracy@1 | 0.9167 |
354
+ | cosine_accuracy@3 | 1.0 |
355
+ | cosine_accuracy@5 | 1.0 |
356
+ | cosine_accuracy@10 | 1.0 |
357
+ | cosine_precision@1 | 0.9167 |
358
+ | cosine_precision@3 | 0.3333 |
359
+ | cosine_precision@5 | 0.2 |
360
+ | cosine_precision@10 | 0.1 |
361
+ | cosine_recall@1 | 0.9167 |
362
+ | cosine_recall@3 | 1.0 |
363
+ | cosine_recall@5 | 1.0 |
364
+ | cosine_recall@10 | 1.0 |
365
+ | **cosine_ndcg@10** | **0.9692** |
366
+ | cosine_mrr@10 | 0.9583 |
367
+ | cosine_map@100 | 0.9583 |
368
+
369
+ <!--
370
+ ## Bias, Risks and Limitations
371
+
372
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
373
+ -->
374
+
375
+ <!--
376
+ ### Recommendations
377
+
378
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
379
+ -->
380
+
381
+ ## Training Details
382
+
383
+ ### Training Dataset
384
+
385
+ #### Unnamed Dataset
386
+
387
+ * Size: 98 training samples
388
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
389
+ * Approximate statistics based on the first 98 samples:
390
+ | | sentence_0 | sentence_1 |
391
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
392
+ | type | string | string |
393
+ | details | <ul><li>min: 13 tokens</li><li>mean: 19.41 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 120.29 tokens</li><li>max: 181 tokens</li></ul> |
394
+ * Samples:
395
+ | sentence_0 | sentence_1 |
396
+ |:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
397
+ | <code>What types of examinations are performed by healthcare providers to assess for ALS?</code> | <code>There is no single test that can definitely diagnose ALS. A healthcare provider will conduct a physical exam and review the person’s full medical history. A neurologic examination will test reflexes, muscle strength, and other responses. These tests should be performed at regular intervals to assess whether symptoms are getting worse over time.<br>A healthcare provider may conduct muscle and imaging tests to rule out other diseases. This can help support an ALS diagnosis. These tests include:</code> |
398
+ | <code>Why are muscle and imaging tests conducted in the process of diagnosing ALS?</code> | <code>There is no single test that can definitely diagnose ALS. A healthcare provider will conduct a physical exam and review the person’s full medical history. A neurologic examination will test reflexes, muscle strength, and other responses. These tests should be performed at regular intervals to assess whether symptoms are getting worse over time.<br>A healthcare provider may conduct muscle and imaging tests to rule out other diseases. This can help support an ALS diagnosis. These tests include:</code> |
399
+ | <code>What are some factors that influence an individual's level of stress in a caregiving situation?</code> | <code>Moving Forward <br>Once you've started to identify any personal barriers to good self -care, you <br>can begin to change your behavior, moving forward one small step at a <br>time. Following are some effective tools for self-care that can start you on <br>your way. <br> <br>Tool #1: Reducing Personal Stress <br>How we perceive and respond to an event is a significant factor in how we <br>adjust and cope with it. The stress you feel is not only the result of your <br>caregiving situation but also the result of your perception of it – whether <br>you see the glass as half-full or half-empty. It is important to remember <br>that you are not alone in your experiences. <br> <br>Your level of stress is influenced by many factors, including the following: <br>• Whether your caregiving is voluntary. If you feel you had no choice in</code> |
400
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
401
+ ```json
402
+ {
403
+ "loss": "MultipleNegativesRankingLoss",
404
+ "matryoshka_dims": [
405
+ 768,
406
+ 512,
407
+ 256,
408
+ 128,
409
+ 64
410
+ ],
411
+ "matryoshka_weights": [
412
+ 1,
413
+ 1,
414
+ 1,
415
+ 1,
416
+ 1
417
+ ],
418
+ "n_dims_per_step": -1
419
+ }
420
+ ```
421
+
422
+ ### Training Hyperparameters
423
+ #### Non-Default Hyperparameters
424
+
425
+ - `eval_strategy`: steps
426
+ - `per_device_train_batch_size`: 10
427
+ - `per_device_eval_batch_size`: 10
428
+ - `num_train_epochs`: 10
429
+ - `multi_dataset_batch_sampler`: round_robin
430
+
431
+ #### All Hyperparameters
432
+ <details><summary>Click to expand</summary>
433
+
434
+ - `overwrite_output_dir`: False
435
+ - `do_predict`: False
436
+ - `eval_strategy`: steps
437
+ - `prediction_loss_only`: True
438
+ - `per_device_train_batch_size`: 10
439
+ - `per_device_eval_batch_size`: 10
440
+ - `per_gpu_train_batch_size`: None
441
+ - `per_gpu_eval_batch_size`: None
442
+ - `gradient_accumulation_steps`: 1
443
+ - `eval_accumulation_steps`: None
444
+ - `torch_empty_cache_steps`: None
445
+ - `learning_rate`: 5e-05
446
+ - `weight_decay`: 0.0
447
+ - `adam_beta1`: 0.9
448
+ - `adam_beta2`: 0.999
449
+ - `adam_epsilon`: 1e-08
450
+ - `max_grad_norm`: 1
451
+ - `num_train_epochs`: 10
452
+ - `max_steps`: -1
453
+ - `lr_scheduler_type`: linear
454
+ - `lr_scheduler_kwargs`: {}
455
+ - `warmup_ratio`: 0.0
456
+ - `warmup_steps`: 0
457
+ - `log_level`: passive
458
+ - `log_level_replica`: warning
459
+ - `log_on_each_node`: True
460
+ - `logging_nan_inf_filter`: True
461
+ - `save_safetensors`: True
462
+ - `save_on_each_node`: False
463
+ - `save_only_model`: False
464
+ - `restore_callback_states_from_checkpoint`: False
465
+ - `no_cuda`: False
466
+ - `use_cpu`: False
467
+ - `use_mps_device`: False
468
+ - `seed`: 42
469
+ - `data_seed`: None
470
+ - `jit_mode_eval`: False
471
+ - `use_ipex`: False
472
+ - `bf16`: False
473
+ - `fp16`: False
474
+ - `fp16_opt_level`: O1
475
+ - `half_precision_backend`: auto
476
+ - `bf16_full_eval`: False
477
+ - `fp16_full_eval`: False
478
+ - `tf32`: None
479
+ - `local_rank`: 0
480
+ - `ddp_backend`: None
481
+ - `tpu_num_cores`: None
482
+ - `tpu_metrics_debug`: False
483
+ - `debug`: []
484
+ - `dataloader_drop_last`: False
485
+ - `dataloader_num_workers`: 0
486
+ - `dataloader_prefetch_factor`: None
487
+ - `past_index`: -1
488
+ - `disable_tqdm`: False
489
+ - `remove_unused_columns`: True
490
+ - `label_names`: None
491
+ - `load_best_model_at_end`: False
492
+ - `ignore_data_skip`: False
493
+ - `fsdp`: []
494
+ - `fsdp_min_num_params`: 0
495
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
496
+ - `fsdp_transformer_layer_cls_to_wrap`: None
497
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
498
+ - `deepspeed`: None
499
+ - `label_smoothing_factor`: 0.0
500
+ - `optim`: adamw_torch
501
+ - `optim_args`: None
502
+ - `adafactor`: False
503
+ - `group_by_length`: False
504
+ - `length_column_name`: length
505
+ - `ddp_find_unused_parameters`: None
506
+ - `ddp_bucket_cap_mb`: None
507
+ - `ddp_broadcast_buffers`: False
508
+ - `dataloader_pin_memory`: True
509
+ - `dataloader_persistent_workers`: False
510
+ - `skip_memory_metrics`: True
511
+ - `use_legacy_prediction_loop`: False
512
+ - `push_to_hub`: False
513
+ - `resume_from_checkpoint`: None
514
+ - `hub_model_id`: None
515
+ - `hub_strategy`: every_save
516
+ - `hub_private_repo`: None
517
+ - `hub_always_push`: False
518
+ - `gradient_checkpointing`: False
519
+ - `gradient_checkpointing_kwargs`: None
520
+ - `include_inputs_for_metrics`: False
521
+ - `include_for_metrics`: []
522
+ - `eval_do_concat_batches`: True
523
+ - `fp16_backend`: auto
524
+ - `push_to_hub_model_id`: None
525
+ - `push_to_hub_organization`: None
526
+ - `mp_parameters`:
527
+ - `auto_find_batch_size`: False
528
+ - `full_determinism`: False
529
+ - `torchdynamo`: None
530
+ - `ray_scope`: last
531
+ - `ddp_timeout`: 1800
532
+ - `torch_compile`: False
533
+ - `torch_compile_backend`: None
534
+ - `torch_compile_mode`: None
535
+ - `dispatch_batches`: None
536
+ - `split_batches`: None
537
+ - `include_tokens_per_second`: False
538
+ - `include_num_input_tokens_seen`: False
539
+ - `neftune_noise_alpha`: None
540
+ - `optim_target_modules`: None
541
+ - `batch_eval_metrics`: False
542
+ - `eval_on_start`: False
543
+ - `use_liger_kernel`: False
544
+ - `eval_use_gather_object`: False
545
+ - `average_tokens_across_devices`: False
546
+ - `prompts`: None
547
+ - `batch_sampler`: batch_sampler
548
+ - `multi_dataset_batch_sampler`: round_robin
549
+
550
+ </details>
551
+
552
+ ### Training Logs
553
+ | Epoch | Step | cosine_ndcg@10 |
554
+ |:-----:|:----:|:--------------:|
555
+ | 1.0 | 10 | 0.9728 |
556
+ | 2.0 | 20 | 0.9728 |
557
+ | 3.0 | 30 | 0.9434 |
558
+ | 4.0 | 40 | 0.9462 |
559
+ | 5.0 | 50 | 0.9616 |
560
+ | 6.0 | 60 | 0.9616 |
561
+ | 7.0 | 70 | 0.9588 |
562
+ | 8.0 | 80 | 0.9616 |
563
+ | 9.0 | 90 | 0.9692 |
564
+ | 10.0 | 100 | 0.9692 |
565
+
566
+
567
+ ### Framework Versions
568
+ - Python: 3.11.4
569
+ - Sentence Transformers: 3.4.1
570
+ - Transformers: 4.49.0
571
+ - PyTorch: 2.6.0+cu124
572
+ - Accelerate: 1.4.0
573
+ - Datasets: 3.3.2
574
+ - Tokenizers: 0.21.0
575
+
576
+ ## Citation
577
+
578
+ ### BibTeX
579
+
580
+ #### Sentence Transformers
581
+ ```bibtex
582
+ @inproceedings{reimers-2019-sentence-bert,
583
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
584
+ author = "Reimers, Nils and Gurevych, Iryna",
585
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
586
+ month = "11",
587
+ year = "2019",
588
+ publisher = "Association for Computational Linguistics",
589
+ url = "https://arxiv.org/abs/1908.10084",
590
+ }
591
+ ```
592
+
593
+ #### MatryoshkaLoss
594
+ ```bibtex
595
+ @misc{kusupati2024matryoshka,
596
+ title={Matryoshka Representation Learning},
597
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
598
+ year={2024},
599
+ eprint={2205.13147},
600
+ archivePrefix={arXiv},
601
+ primaryClass={cs.LG}
602
+ }
603
+ ```
604
+
605
+ #### MultipleNegativesRankingLoss
606
+ ```bibtex
607
+ @misc{henderson2017efficient,
608
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
609
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
610
+ year={2017},
611
+ eprint={1705.00652},
612
+ archivePrefix={arXiv},
613
+ primaryClass={cs.CL}
614
+ }
615
+ ```
616
+
617
+ <!--
618
+ ## Glossary
619
+
620
+ *Clearly define terms in order to be accessible across audiences.*
621
+ -->
622
+
623
+ <!--
624
+ ## Model Card Authors
625
+
626
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
627
+ -->
628
+
629
+ <!--
630
+ ## Model Card Contact
631
+
632
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
633
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.49.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:705a25c50d43587d7c2c2ebe0cfa3f619db2b4140845e88cd55ef66be85b2e8c
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff