File size: 28,961 Bytes
af0231a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:98
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: What are some common attitudes and beliefs that can create personal
barriers to self-care for family caregivers?
sentences:
- 'Support for nutrition, breathing, and feeding
People with ALS may have trouble chewing and swallowing their food, and getting
the nutrients they need. Nutritionists and registered dieticians can help plan
small, nutritious meals throughout the day and identify foods to avoid. When the
person can no longer eat with help, a feeding tube can reduce the person’s risk
of choking and pneumonia.'
- "Amyotrophic Lateral Sclerosis (ALS) | National Institute of Neurological Disorders\
\ and Stroke\n\n\n\n\n\n\n\n\n Skip to main content\n \n\n\n\n\n\n\n\n\
\n\n\n\n\n\n\nAn official website of the United States government\n\n \
\ Here’s how you know\n\n\n\n\n\n\n\n\n\n\n\nOfficial websites use .gov \n\
\ A\n .gov\n website belongs to an\
\ official government organization in the United States.\n \n\n\n\
\n\n\n\n\n\nSecure .gov websites use HTTPS\n\n A lock\n \
\ (\n\n)\n or\n https://\n \
\ means you’ve safely connected to the .gov website. Share sensitive\
\ information only on official, secure websites.\n \n\n\n\n\n\n\
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nSearch\n\n\nMenu\n\n\n\n\n\n\n\n\n\nSearch NINDS\n\
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nSearch NINDS\n\n\n\n\n\n\n\n\n\n\n\
\n\n\n\nMain navigation"
- "Identifying Personal Barriers \nMany times, attitudes and beliefs form personal\
\ barriers that stand in the \nway of caring for yourself. Not taking care of\
\ yourself may be a lifelong \npattern, with taking care of others an easier option.\
\ However, as a family \ncaregiver you must ask yourself, \"What good will I\
\ be to the person I care \nfor if I become ill? If I die?\" Breaking old patterns\
\ and overcoming \nobstacles is not an easy proposition, but it can be done –\
\ regardless of \nyour age or situation. The first task in removing personal\
\ barriers to self-\ncare is to identify what is in your way. For example, \n\
• Do you feel you have to prove that you are worthy of the care recipient's \n\
affection? \n• Do you think you are being selfish if you put your needs first?\
\ \n• Is it frightening to think of your own needs? What is the fear about?"
- source_sentence: What role does the SOD1 gene play in the body?
sentences:
- "Migraine Trainer® Shareable Resources\n\n\n\nMind Your Risks®\n\n\nNINDS Brain\
\ Educational Resources\n\n\nStroke\n\n\n\n\n\n\nStroke Overview\n\n\nPrevention\n\
\n\nSigns and Symptoms\n\n\nAssess and Treat\n\n\n\n\n\n\nNIH Stroke Scale\n\n\
\n\nRecovery\n\n\nResearch\n\n\nOutreach\n\n\n\n\n\n\n\n\nDid you find the content\
\ you were looking for?\n\n\n\n\n\nYes, I did find the content I was looking for\n\
\n\n\n\nNo, I did not find the content I was looking for\n\n\n\n\n\n\n\nPlease\
\ rate how easy it was to navigate the NINDS website\n\n\n\n\n\nVery easy to navigate\n\
\n\n\n\nEasy to navigate\n\n\n\n\nNeutral\n\n\n\n\nDifficult to navigate\n\n\n\
\n\nVery difficult to navigate\n\n\n\n\n\n\nThank you for letting us know! Any\
\ other feedback?\n\n\n\n\nSubmit\n\n\n\n\n\nThis site is protected by reCAPTCHA\
\ and the Google Privacy Policyand Terms of Serviceapply.\n\n\n\n\n\n\n\n\n\n\n\
\n Last reviewed on July 19, 2024\n \n\n\n\n\n\n\n\
\n\n\n\n\nContact Us"
- 'Muscle twitches in the arm, leg, shoulder, or tongue
Muscle cramps
Tight and stiff muscles (spasticity)
Muscle weakness affecting an arm, a leg, or the neck
Slurred and nasal speech
Difficulty chewing or swallowing
As the disease progresses, muscle weakness and atrophy spread to other parts of
your body. People with ALS may develop problems with:
Chewing food and swallowing (dysphagia)
Drooling (sialorrhea)
Speaking or forming words (dysarthria)
Breathing (dyspnea)
Unintended crying, laughing, or other emotional displays (pseudobulbar symptoms)
Constipation
Maintaining weight and getting enough nutrients'
- "About 25-40% of all familial cases (and a small percentage of sporadic cases)\
\ are caused by a defect in the C9orf72 gene. C9orf72 makes a protein found in\
\ motor neurons and nerve cells in the brain. \nAnother 12-20% of familial cases\
\ result from mutations in the SOD1 gene. SOD1 is involved in production of the\
\ enzyme copper-zinc superoxide dismutase 1."
- source_sentence: What types of resources are available for caregivers of individuals
with ALS?
sentences:
- 'Eventually, people with ALS will not be able to stand or walk, get in or out
of bed on their own, use their hands and arms, or breathe on their own. Because
they usually remain able to reason, remember, and understand, they are aware of
their progressive loss of function. This can cause anxiety and depression in the
person with ALS and their loved ones. Although not as common, people with ALS
also may experience problems with language or decision-making. Some also develop
a form of dementia known as FTD-ALS.
Most people with ALS die from being unable to breathe on their own (known as respiratory
failure,) usually within three to five years from when the symptoms first appear.
However, about 10% survive for a decade or more.
Who is more likely to get amyotrophic lateral sclerosis (ALS)?'
- 'Motor Neuron Diseases
Order publications from the NINDS Catalog
The NINDS Publication Catalog offers printed materials on neurological disorders
for patients, health professionals, and the general public. All materials are
free of charge, and a downloadable PDF version is also available for most publications.
Order NINDS Publications
Health Information
Disorders
Glossary of Neurological Terms
Order Publications
Clinical Trials
Clinical Trials in the Spotlight
Find NINDS Clinical Trials
Patient & Caregiver Education
Brain Attack Coalition
Brain Donation
Public Education
Brain Basics
Know Your Brain
Understanding Sleep
Preventing Stroke
The Life and Death of a Neuron
Genes and the Brain
Migraine Trainer®
Migraine Trainer® Shareable Resources'
- "Caring for a person living with ALS\nAs the person with ALS progresses in their\
\ disease, they will need more and more help with daily activities. Being a caregiver\
\ for a person with ALS, while rewarding, can be challenging for the person’s\
\ loved ones and caregivers. It is important for caregivers take care of themselves\
\ and to seek support when needed. Free and paid resources are available to provide\
\ home health care services and support. Visit the organizations listed at the\
\ end of this article to find support in your area. \nWhat are the latest updates\
\ on amyotrophic lateral sclerosis (ALS)?"
- source_sentence: How can prospective donors participate in ALS research through
brain donation?
sentences:
- 'Doctors may use the following medications approved by the U.S. Food and Drug
Administration (FDA) to support a treatment plan for ALS:'
- NINDS also supports the NIH NeuroBioBank, a collaborative effort involving several
brain banks across the U.S. that supply investigators with tissue from people
with neurological and other disorders. Tissue from individuals with ALS is needed
to help advance critical research on the disease. A single donated brain can make
a huge impact on ALS research, potentially providing information for hundreds
of studies. The goal is to increase the availability of, and access to, high quality
specimens for research to understand the neurological basis of the disease. Prospective
donors can begin the enrollment process by visiting Learn How to Become a Brain
Donor.
- The National ALS Registry collects, manages, and analyzes de-identified data about
people with ALS in the United States. Developed by the Center for Disease Control
and Prevention's Agency for Toxic Substances and Disease Registry (ATSDR), this
registry establishes information about the number of ALS cases, collects demographic,
occupational, and environmental exposure data from people with ALS to learn about
potential risk factors for the disease, and notifies participants about research
opportunities. The Registry includes data from national databases as well as de-identified
information provided by individuals with ALS. All information is kept confidential.
People with ALS can add their information to the registry and sign up to receive
for more information.
- source_sentence: Does having a risk factor guarantee that a person will develop
a disorder?
sentences:
- 'Doctors may use the following medications approved by the U.S. Food and Drug
Administration (FDA) to support a treatment plan for ALS:'
- "possible decline in quality of life. \n \nBut despite these risks, family caregivers\
\ of any age are less likely than \nnon-caregivers to practice preventive healthcare\
\ and self-care behavior. \nRegardless of age, sex, and race and ethnicity, caregivers\
\ report problems \nattending to their own health and well-being while managing\
\ caregiving \nresponsibilities. They report: \n• sleep deprivation \n• poor\
\ eating habits \n• failure to exercise \n• failure to stay in bed when ill\
\ \n• postponement of or failure to make medical appointments ."
- 'A risk factor is a condition or behavior that occurs more frequently in those
who have a disease, or who are at greater risk of getting a disease, than in those
who don''t have the risk factor. Having a risk factor doesn''t mean a person will
develop a disorder, and not having a risk factor doesn''t mean you won’t. Risk
factors for ALS include:'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9166666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 1.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9166666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3333333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.20000000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.10000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9166666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 1.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9637887397321441
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.951388888888889
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9513888888888888
name: Cosine Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ernestobs7/caregiver-ft-v1")
# Run inference
sentences = [
'Does having a risk factor guarantee that a person will develop a disorder?',
"A risk factor is a condition or behavior that occurs more frequently in those who have a disease, or who are at greater risk of getting a disease, than in those who don't have the risk factor. Having a risk factor doesn't mean a person will develop a disorder, and not having a risk factor doesn't mean you won’t. Risk factors for ALS include:",
'possible decline in quality of life. \n \nBut despite these risks, family caregivers of any age are less likely than \nnon-caregivers to practice preventive healthcare and self-care behavior. \nRegardless of age, sex, and race and ethnicity, caregivers report problems \nattending to their own health and well-being while managing caregiving \nresponsibilities. They report: \n• sleep deprivation \n• poor eating habits \n• failure to exercise \n• failure to stay in bed when ill \n• postponement of or failure to make medical appointments .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9167 |
| cosine_accuracy@3 | 1.0 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9167 |
| cosine_precision@3 | 0.3333 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9167 |
| cosine_recall@3 | 1.0 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| **cosine_ndcg@10** | **0.9638** |
| cosine_mrr@10 | 0.9514 |
| cosine_map@100 | 0.9514 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 98 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 98 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 19.21 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 120.29 tokens</li><li>max: 181 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-----------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are some common symptoms experienced by individuals with ALS related to muscle function?</code> | <code>Muscle twitches in the arm, leg, shoulder, or tongue<br>Muscle cramps<br>Tight and stiff muscles (spasticity)<br>Muscle weakness affecting an arm, a leg, or the neck<br>Slurred and nasal speech<br>Difficulty chewing or swallowing<br><br>As the disease progresses, muscle weakness and atrophy spread to other parts of your body. People with ALS may develop problems with:<br><br>Chewing food and swallowing (dysphagia)<br>Drooling (sialorrhea)<br>Speaking or forming words (dysarthria)<br>Breathing (dyspnea)<br>Unintended crying, laughing, or other emotional displays (pseudobulbar symptoms)<br>Constipation<br>Maintaining weight and getting enough nutrients</code> |
| <code>How does ALS affect a person's ability to chew and swallow food?</code> | <code>Muscle twitches in the arm, leg, shoulder, or tongue<br>Muscle cramps<br>Tight and stiff muscles (spasticity)<br>Muscle weakness affecting an arm, a leg, or the neck<br>Slurred and nasal speech<br>Difficulty chewing or swallowing<br><br>As the disease progresses, muscle weakness and atrophy spread to other parts of your body. People with ALS may develop problems with:<br><br>Chewing food and swallowing (dysphagia)<br>Drooling (sialorrhea)<br>Speaking or forming words (dysarthria)<br>Breathing (dyspnea)<br>Unintended crying, laughing, or other emotional displays (pseudobulbar symptoms)<br>Constipation<br>Maintaining weight and getting enough nutrients</code> |
| <code>What percentage of ALS cases are classified as familial?</code> | <code>About 10% of all ALS cases are familial (also called inherited or genetic). Changes in more than a dozen genes have been found to cause familial ALS.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| 1.0 | 10 | 0.9382 |
| 2.0 | 20 | 0.9539 |
| 3.0 | 30 | 0.9484 |
| 4.0 | 40 | 0.9484 |
| 5.0 | 50 | 0.9638 |
| 6.0 | 60 | 0.9638 |
| 7.0 | 70 | 0.9638 |
| 8.0 | 80 | 0.9638 |
| 9.0 | 90 | 0.9638 |
| 10.0 | 100 | 0.9638 |
### Framework Versions
- Python: 3.11.4
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |