ernestum commited on
Commit
652e175
·
1 Parent(s): db34578

Initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
29
+ vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/Swimmer-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 162.15 +/- 8.19
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: seals/Swimmer-v0
20
+ type: seals/Swimmer-v0
21
+ ---
22
+
23
+ # **PPO** Agent playing **seals/Swimmer-v0**
24
+ This is a trained model of a **PPO** agent playing **seals/Swimmer-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
26
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
27
+
28
+ The RL Zoo is a training framework for Stable Baselines3
29
+ reinforcement learning agents,
30
+ with hyperparameter optimization and pre-trained agents included.
31
+
32
+ ## Usage (with SB3 RL Zoo)
33
+
34
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
35
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
36
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
37
+
38
+ ```
39
+ # Download model and save it into the logs/ folder
40
+ python -m utils.load_from_hub --algo ppo --env seals/Swimmer-v0 -orga ernestumorga -f logs/
41
+ python enjoy.py --algo ppo --env seals/Swimmer-v0 -f logs/
42
+ ```
43
+
44
+ ## Training (with the RL Zoo)
45
+ ```
46
+ python train.py --algo ppo --env seals/Swimmer-v0 -f logs/
47
+ # Upload the model and generate video (when possible)
48
+ python -m utils.push_to_hub --algo ppo --env seals/Swimmer-v0 -f logs/ -orga ernestumorga
49
+ ```
50
+
51
+ ## Hyperparameters
52
+ ```python
53
+ OrderedDict([('batch_size', 8),
54
+ ('clip_range', 0.1),
55
+ ('ent_coef', 5.167107294612664e-08),
56
+ ('gae_lambda', 0.95),
57
+ ('gamma', 0.999),
58
+ ('learning_rate', 0.0001214437022727675),
59
+ ('max_grad_norm', 2),
60
+ ('n_epochs', 20),
61
+ ('n_steps', 2048),
62
+ ('n_timesteps', 1000000.0),
63
+ ('normalize', True),
64
+ ('policy', 'MlpPolicy'),
65
+ ('policy_kwargs',
66
+ 'dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, '
67
+ '64])])'),
68
+ ('vf_coef', 0.6162112311062333),
69
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
70
+ ```
args.yml ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - device
5
+ - cpu
6
+ - - env
7
+ - seals/Swimmer-v0
8
+ - - env_kwargs
9
+ - null
10
+ - - eval_episodes
11
+ - 5
12
+ - - eval_freq
13
+ - 25000
14
+ - - gym_packages
15
+ - []
16
+ - - hyperparams
17
+ - null
18
+ - - log_folder
19
+ - seals_experts
20
+ - - log_interval
21
+ - -1
22
+ - - n_eval_envs
23
+ - 1
24
+ - - n_evaluations
25
+ - null
26
+ - - n_jobs
27
+ - 1
28
+ - - n_startup_trials
29
+ - 10
30
+ - - n_timesteps
31
+ - -1
32
+ - - n_trials
33
+ - 500
34
+ - - no_optim_plots
35
+ - false
36
+ - - num_threads
37
+ - 4
38
+ - - optimization_log_path
39
+ - null
40
+ - - optimize_hyperparameters
41
+ - false
42
+ - - pruner
43
+ - median
44
+ - - sampler
45
+ - tpe
46
+ - - save_freq
47
+ - -1
48
+ - - save_replay_buffer
49
+ - false
50
+ - - seed
51
+ - 1907246581
52
+ - - storage
53
+ - null
54
+ - - study_name
55
+ - null
56
+ - - tensorboard_log
57
+ - ''
58
+ - - total_n_trials
59
+ - null
60
+ - - track
61
+ - false
62
+ - - trained_agent
63
+ - ''
64
+ - - truncate_last_trajectory
65
+ - true
66
+ - - uuid
67
+ - false
68
+ - - vec_env
69
+ - dummy
70
+ - - verbose
71
+ - 1
72
+ - - wandb_entity
73
+ - null
74
+ - - wandb_project_name
75
+ - sb3
config.yml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 8
4
+ - - clip_range
5
+ - 0.1
6
+ - - ent_coef
7
+ - 5.167107294612664e-08
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.999
12
+ - - learning_rate
13
+ - 0.0001214437022727675
14
+ - - max_grad_norm
15
+ - 2
16
+ - - n_epochs
17
+ - 20
18
+ - - n_steps
19
+ - 2048
20
+ - - n_timesteps
21
+ - 1000000.0
22
+ - - normalize
23
+ - true
24
+ - - policy
25
+ - MlpPolicy
26
+ - - policy_kwargs
27
+ - dict(activation_fn=nn.Tanh, net_arch=[dict(pi=[64, 64], vf=[64, 64])])
28
+ - - vf_coef
29
+ - 0.6162112311062333
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-seals-Swimmer-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27719fc02dc4752374491aa8eaa7d9154bb5479fa7f174ce1681f3fbec0ce559
3
+ size 151224
ppo-seals-Swimmer-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.1a8
ppo-seals-Swimmer-v0/data ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe17094e670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe17094e700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe17094e790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe17094e820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe17094e8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe17094e940>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe17094e9d0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe17094ea60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe17094eaf0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe17094eb80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe17094ec10>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe17094a240>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVaAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCcGmUXZQoS0BLQGWMAnZmlF2UKEtAS0BldWF1Lg==",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
+ "net_arch": [
27
+ {
28
+ "pi": [
29
+ 64,
30
+ 64
31
+ ],
32
+ "vf": [
33
+ 64,
34
+ 64
35
+ ]
36
+ }
37
+ ]
38
+ },
39
+ "observation_space": {
40
+ ":type:": "<class 'gym.spaces.box.Box'>",
41
+ ":serialized:": "gAWVAwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWUAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5RoCksKhZSMAUOUdJRSlIwEaGlnaJRoEiiWUAAAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksKhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgoAAAAAAAAAAAAAAAAAAAAAAJRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksKhZRoFXSUUpSMDWJvdW5kZWRfYWJvdmWUaBIolgoAAAAAAAAAAAAAAAAAAAAAAJRoIUsKhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
42
+ "dtype": "float64",
43
+ "_shape": [
44
+ 10
45
+ ],
46
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
47
+ "high": "[inf inf inf inf inf inf inf inf inf inf]",
48
+ "bounded_below": "[False False False False False False False False False False]",
49
+ "bounded_above": "[False False False False False False False False False False]",
50
+ "_np_random": null
51
+ },
52
+ "action_space": {
53
+ ":type:": "<class 'gym.spaces.box.Box'>",
54
+ ":serialized:": "gAWV6wsAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
55
+ "dtype": "float32",
56
+ "_shape": [
57
+ 2
58
+ ],
59
+ "low": "[-1. -1.]",
60
+ "high": "[1. 1.]",
61
+ "bounded_below": "[ True True]",
62
+ "bounded_above": "[ True True]",
63
+ "_np_random": "RandomState(MT19937)"
64
+ },
65
+ "n_envs": 1,
66
+ "num_timesteps": 1001472,
67
+ "_total_timesteps": 1000000,
68
+ "_num_timesteps_at_start": 0,
69
+ "seed": 0,
70
+ "action_noise": null,
71
+ "start_time": 1651240812.9806583,
72
+ "learning_rate": {
73
+ ":type:": "<class 'function'>",
74
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8f1fLrE4hEhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
75
+ },
76
+ "tensorboard_log": null,
77
+ "lr_schedule": {
78
+ ":type:": "<class 'function'>",
79
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8f1fLrE4hEhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
80
+ },
81
+ "_last_obs": null,
82
+ "_last_episode_starts": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
85
+ },
86
+ "_last_original_obs": {
87
+ ":type:": "<class 'numpy.ndarray'>",
88
+ ":serialized:": "gAWVxQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZQAAAAAAAAADL8Rc+Sprc/aHsbnXtOlb8wYwdN2TelvzTI1aHxNZk/rXXAmfMJtr9Ii80N75elP34Gpqnqlrk/p5tiWM6fpb8gRb1WKr+rP/B+rDrj17e/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwqGlIwBQ5R0lFKULg=="
89
+ },
90
+ "_episode_num": 0,
91
+ "use_sde": false,
92
+ "sde_sample_freq": -1,
93
+ "_current_progress_remaining": -0.0014719999999999178,
94
+ "ep_info_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPzp15TNkY0CUhpRSlIwBbJRN6AOMAXSUR0CyXczIRywOdX2UKGgGaAloD0MI5V5gVqgIZECUhpRSlGgVTegDaBZHQLJeY0wrUb11fZQoaAZoCWgPQwikwW1t4VhjQJSGlFKUaBVN6ANoFkdAsmhGplz2e3V9lChoBmgJaA9DCFxaDYn7XGFAlIaUUpRoFU3oA2gWR0CyaOX8wYcedX2UKGgGaAloD0MIlzYcloYcZECUhpRSlGgVTegDaBZHQLJy86+36RB1fZQoaAZoCWgPQwjzWZ4H94ZjQJSGlFKUaBVN6ANoFkdAsnOU6BAfMnV9lChoBmgJaA9DCFIpdjSOF2FAlIaUUpRoFU3oA2gWR0CyfTgEt/WldX2UKGgGaAloD0MIe/oI/GFIYkCUhpRSlGgVTegDaBZHQLJ9ze+Eh7p1fZQoaAZoCWgPQwim0k84O11iQJSGlFKUaBVN6ANoFkdAsoduKvV3EHV9lChoBmgJaA9DCOF5qdgYIWFAlIaUUpRoFU3oA2gWR0CyiAQR02cbdX2UKGgGaAloD0MIrkm3JfKiYkCUhpRSlGgVTegDaBZHQLKRuL5hz/91fZQoaAZoCWgPQwjhCijUU99gQJSGlFKUaBVN6ANoFkdAspJOZuyeI3V9lChoBmgJaA9DCHPYfcdwuGJAlIaUUpRoFU3oA2gWR0CynBC6QNkOdX2UKGgGaAloD0MIEYyDS8cJZECUhpRSlGgVTegDaBZHQLKcqDe0ojR1fZQoaAZoCWgPQwiKkSVzLIpjQJSGlFKUaBVN6ANoFkdAsqZRPrOZ9nV9lChoBmgJaA9DCPm6DP/pPGJAlIaUUpRoFU3oA2gWR0CypvTGT9sKdX2UKGgGaAloD0MI0Chd+pc/ZECUhpRSlGgVTegDaBZHQLKxG05U96l1fZQoaAZoCWgPQwga+ie42K1iQJSGlFKUaBVN6ANoFkdAsrGx3JPqLXV9lChoBmgJaA9DCAn5oGezWmRAlIaUUpRoFU3oA2gWR0Cyu2m43FUAdX2UKGgGaAloD0MIDD84n7pqZECUhpRSlGgVTegDaBZHQLK7/5ftx+91fZQoaAZoCWgPQwinWguzUNZjQJSGlFKUaBVN6ANoFkdAssV+AskIHHV9lChoBmgJaA9DCA1VMZV+0GRAlIaUUpRoFU3oA2gWR0CyxhNDhLoPdX2UKGgGaAloD0MIzxJkBNSIZECUhpRSlGgVTegDaBZHQLLP+m5Dqnp1fZQoaAZoCWgPQwhvL2mMVp1kQJSGlFKUaBVN6ANoFkdAstCR09yLh3V9lChoBmgJaA9DCNm0Ugjk/WRAlIaUUpRoFU3oA2gWR0Cy3QnumaYvdX2UKGgGaAloD0MIu5unOuTYZECUhpRSlGgVTegDaBZHQLLdoLpA2Q51fZQoaAZoCWgPQwitpBXfUHdjQJSGlFKUaBVN6ANoFkdAsudxapxWDHV9lChoBmgJaA9DCHocBvNXmmRAlIaUUpRoFU3oA2gWR0Cy6Adnwob5dX2UKGgGaAloD0MItU5cjlcWY0CUhpRSlGgVTegDaBZHQLLx0rM1TBJ1fZQoaAZoCWgPQwgqcLINXLdkQJSGlFKUaBVN6ANoFkdAsvJqH31zyXV9lChoBmgJaA9DCDsdyHrq12RAlIaUUpRoFU3oA2gWR0Cy/LnZ9NN8dX2UKGgGaAloD0MI6lxRSgjvYkCUhpRSlGgVTegDaBZHQLL9T/qPfbd1fZQoaAZoCWgPQwijeQCLfKVkQJSGlFKUaBVN6ANoFkdAswf/hWHUMHV9lChoBmgJaA9DCAg7xapBKGJAlIaUUpRoFU3oA2gWR0CzCJVHWjGldX2UKGgGaAloD0MIYr8n1ikLZUCUhpRSlGgVTegDaBZHQLMSFL/jsD51fZQoaAZoCWgPQwir6uV3GqJjQJSGlFKUaBVN6ANoFkdAsxKqK8+Ro3V9lChoBmgJaA9DCLx4P26/amRAlIaUUpRoFU3oA2gWR0CzHIehK15TdX2UKGgGaAloD0MICI7LuCmqY0CUhpRSlGgVTegDaBZHQLMdHgMMI/t1fZQoaAZoCWgPQwhLd9fZkABlQJSGlFKUaBVN6ANoFkdAsx21QxesxXV9lChoBmgJaA9DCME3TZ+djmJAlIaUUpRoFU3oA2gWR0CzJ6dj0+TvdX2UKGgGaAloD0MI8Ps3L06VZECUhpRSlGgVTegDaBZHQLMoPoL5RCR1fZQoaAZoCWgPQwigUbr0L/9iQJSGlFKUaBVN6ANoFkdAszJe36Q/5nV9lChoBmgJaA9DCNydtdsug2JAlIaUUpRoFU3oA2gWR0CzMvewosqbdX2UKGgGaAloD0MIvVXXoZrBY0CUhpRSlGgVTegDaBZHQLM9WaPCEYh1fZQoaAZoCWgPQwgEr5Y7s2BjQJSGlFKUaBVN6ANoFkdAsz3v6yjYZnV9lChoBmgJaA9DCCrHZHF/yGRAlIaUUpRoFU3oA2gWR0CzR9FENOM3dX2UKGgGaAloD0MIuhCrP8JDYkCUhpRSlGgVTegDaBZHQLNIaDv3JxN1fZQoaAZoCWgPQwisHjAPGc5kQJSGlFKUaBVN6ANoFkdAs1Ic5zYEn3V9lChoBmgJaA9DCFa5UPnXj2RAlIaUUpRoFU3oA2gWR0CzUrVJ+UhWdX2UKGgGaAloD0MIhXzQs1nyZECUhpRSlGgVTegDaBZHQLNfUz+FUQ11fZQoaAZoCWgPQwjNAYI5+sZkQJSGlFKUaBVN6ANoFkdAs1/reCTUzHV9lChoBmgJaA9DCHY4ukp39mRAlIaUUpRoFU3oA2gWR0Czahnf642CdX2UKGgGaAloD0MIM1LvqRytZECUhpRSlGgVTegDaBZHQLNqsx46fap1fZQoaAZoCWgPQwjf+rDeqMhkQJSGlFKUaBVN6ANoFkdAs3Q/0cwQDnV9lChoBmgJaA9DCH8UdeYerWRAlIaUUpRoFU3oA2gWR0CzdNgeNkvsdX2UKGgGaAloD0MIURVT6SfxZECUhpRSlGgVTegDaBZHQLN+fiAlOXV1fZQoaAZoCWgPQwi8QEmBhfVkQJSGlFKUaBVN6ANoFkdAs38U9ZA6dXV9lChoBmgJaA9DCOVfyytX+WRAlIaUUpRoFU3oA2gWR0CziWZgb6xgdX2UKGgGaAloD0MIGCXoL/RvZECUhpRSlGgVTegDaBZHQLOJ/jrzGxV1fZQoaAZoCWgPQwjQRNjw9AVlQJSGlFKUaBVN6ANoFkdAs5QMDxLCenV9lChoBmgJaA9DCEHXvoDe0GRAlIaUUpRoFU3oA2gWR0CzlKOSr5qNdX2UKGgGaAloD0MIgGYQH9jkZECUhpRSlGgVTegDaBZHQLOevJ/5Lyt1fZQoaAZoCWgPQwhuMqoM49xiQJSGlFKUaBVN6ANoFkdAs59YyO7xu3V9lChoBmgJaA9DCF5ortNIjWNAlIaUUpRoFU3oA2gWR0CzqPOk1uR+dX2UKGgGaAloD0MIaD9SRAayZECUhpRSlGgVTegDaBZHQLOpiw8W9Dh1fZQoaAZoCWgPQwiMu0G0ViZlQJSGlFKUaBVN6ANoFkdAs7MYD1XeWXV9lChoBmgJaA9DCL/WpUbo5WRAlIaUUpRoFU3oA2gWR0Czs67kn1FpdX2UKGgGaAloD0MIaQBvgQSnYkCUhpRSlGgVTegDaBZHQLO9PolUp/h1fZQoaAZoCWgPQwiU9gZfGLdkQJSGlFKUaBVN6ANoFkdAs73U1gpjMHV9lChoBmgJaA9DCIwPs5dtGWVAlIaUUpRoFU3oA2gWR0Czx7zPnjhldX2UKGgGaAloD0MImggbnt7aZECUhpRSlGgVTegDaBZHQLPIUz8P4Eh1fZQoaAZoCWgPQwg7cw8J37JkQJSGlFKUaBVN6ANoFkdAs9Himbb1y3V9lChoBmgJaA9DCEf/y7XoLWVAlIaUUpRoFU3oA2gWR0Cz0nkUfxMGdX2UKGgGaAloD0MIFxIwurxNZECUhpRSlGgVTegDaBZHQLPcmOcDr7h1fZQoaAZoCWgPQwgc6+I2GrRkQJSGlFKUaBVN6ANoFkdAs9+sfRu0kXV9lChoBmgJaA9DCP2jb9K0H2VAlIaUUpRoFU3oA2gWR0Cz6TlVo6CEdX2UKGgGaAloD0MIC+wxkdIZZUCUhpRSlGgVTegDaBZHQLPpw8l5WzZ1fZQoaAZoCWgPQwjb2y3JAThlQJSGlFKUaBVN6ANoFkdAs/MECzTnaHV9lChoBmgJaA9DCGGL3T6romRAlIaUUpRoFU3oA2gWR0Cz85YUJv5ydX2UKGgGaAloD0MIf8ADA4jxZECUhpRSlGgVTegDaBZHQLP93dY4hll1fZQoaAZoCWgPQwhIiV3bW75kQJSGlFKUaBVN6ANoFkdAs/51Ge+VT3V9lChoBmgJaA9DCPRNmgZFCGVAlIaUUpRoFU3oA2gWR0Cz/w4iX6ZZdX2UKGgGaAloD0MITmTmAhcoZUCUhpRSlGgVTegDaBZHQLQJA1Oj7AN1fZQoaAZoCWgPQwhUcHhBxPNkQJSGlFKUaBVN6ANoFkdAtAmdNZeRgnV9lChoBmgJaA9DCNv9KsB35GRAlIaUUpRoFU3oA2gWR0C0E4soUi6hdX2UKGgGaAloD0MI0LUvoJfbZECUhpRSlGgVTegDaBZHQLQUD/82rGR1fZQoaAZoCWgPQwg2rn/X5wNlQJSGlFKUaBVN6ANoFkdAtB3DfMwDeXV9lChoBmgJaA9DCJ4I4jwc5WJAlIaUUpRoFU3oA2gWR0C0Hlp5VwPzdX2UKGgGaAloD0MI6ZrJN9vqZECUhpRSlGgVTegDaBZHQLQos+qBErp1fZQoaAZoCWgPQwgoZOdt7BNlQJSGlFKUaBVN6ANoFkdAtClKZE2HcnV9lChoBmgJaA9DCB4Wak1zJmVAlIaUUpRoFU3oA2gWR0C0MvSmALApdX2UKGgGaAloD0MI7YDripkDZUCUhpRSlGgVTegDaBZHQLQziuQZGax1fZQoaAZoCWgPQwiZgF8jSe5kQJSGlFKUaBVN6ANoFkdAtDyfLHMlknV9lChoBmgJaA9DCH47iQh/cmJAlIaUUpRoFU3oA2gWR0C0PSTSofjkdX2UKGgGaAloD0MIkSi0rPsEZUCUhpRSlGgVTegDaBZHQLRGIJLM9r51fZQoaAZoCWgPQwjFOH8TisdiQJSGlFKUaBVN6ANoFkdAtEa2/sVtXXV9lChoBmgJaA9DCOWYLO4/1mRAlIaUUpRoFU3oA2gWR0C0UCxL5AQhdX2UKGgGaAloD0MIzXfwEwepZECUhpRSlGgVTegDaBZHQLRQwtygf2d1fZQoaAZoCWgPQwgWS5F8pdpkQJSGlFKUaBVN6ANoFkdAtFo5AdGRWHV9lChoBmgJaA9DCJhuEoNA0GRAlIaUUpRoFU3oA2gWR0C0XUVpj+aSdWUu"
97
+ },
98
+ "ep_success_buffer": {
99
+ ":type:": "<class 'collections.deque'>",
100
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
101
+ },
102
+ "_n_updates": 9780,
103
+ "n_steps": 2048,
104
+ "gamma": 0.999,
105
+ "gae_lambda": 0.95,
106
+ "ent_coef": 5.167107294612664e-08,
107
+ "vf_coef": 0.6162112311062333,
108
+ "max_grad_norm": 2,
109
+ "batch_size": 8,
110
+ "n_epochs": 20,
111
+ "clip_range": {
112
+ ":type:": "<class 'function'>",
113
+ ":serialized:": "gAWVmAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGgvbmFzL3VjYi9tYXhpbWlsaWFuL3JsLWJhc2VsaW5lczMtem9vL3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+5mZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
114
+ },
115
+ "clip_range_vf": null,
116
+ "normalize_advantage": true,
117
+ "target_kl": null
118
+ }
ppo-seals-Swimmer-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccfd306c8fd6da2ba0cf8a62fc7de1e4d2fd6c413e14f22ecf8954f8248a489b
3
+ size 86167
ppo-seals-Swimmer-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc9f3f1501d5e00506989044800dc82ad16cf50db0b686ac21585a81f2b98256
3
+ size 43902
ppo-seals-Swimmer-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-seals-Swimmer-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-121-generic-x86_64-with-glibc2.29 #137-Ubuntu SMP Wed Jun 15 13:33:07 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.5.1a8
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: False
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef141d5fe53027695469d669878810647ca84f509ab9c7f3d65c23ee559644fc
3
+ size 1102283
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 162.1493199, "std_reward": 8.194538092541295, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-11T14:41:13.376367"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89cee82d6b9af4ab06bd80c9081085d0988e9084185656b75df49b2e1bdd9837
3
+ size 32958
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e658385122ebcd96b9a4dfb52599173d9ac67882d291616288fddba98442215
3
+ size 4394