File size: 2,068 Bytes
93e1836
 
 
16619db
93e1836
 
 
 
 
 
 
 
 
 
 
 
16619db
93e1836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16619db
93e1836
 
 
 
 
 
5fb4f70
93e1836
 
 
5fb4f70
93e1836
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-vit-doc-text-classifer
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: ernie-ai/image-text-examples-ar-cn-latin-notext
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9029850746268657
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-vit-doc-text-classifer

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the ernie-ai/image-text-examples-ar-cn-latin-notext dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3107
- Accuracy: 0.9030

## Model description

It is an image classificatin model fine-tuned to predict whether an images contains text and if that text is Latin script, Chinese or Arabic. It also classifies non-text images.

## Training and evaluation data

Dataset: [ernie-ai/image-text-examples-ar-cn-latin-notext]

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2719        | 2.08  | 100  | 0.4120          | 0.8657   |
| 0.1027        | 4.17  | 200  | 0.3907          | 0.8881   |
| 0.0723        | 6.25  | 300  | 0.3107          | 0.9030   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2