--- library_name: peft license: llama2 base_model: lmsys/vicuna-13b-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: df36ec19-0bef-467d-9b7e-8a3106fba5e8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora base_model: lmsys/vicuna-13b-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 918636bf96f6fa65_train_data.json ds_type: json format: custom path: /workspace/input_data/918636bf96f6fa65_train_data.json type: field_input: description field_instruction: input persona field_output: synthesized text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: error577/df36ec19-0bef-467d-9b7e-8a3106fba5e8 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 1 mlflow_experiment_name: /tmp/918636bf96f6fa65_train_data.json model_type: AutoModelForCausalLM num_epochs: 4 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 256 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.002 wandb_entity: null wandb_mode: online wandb_name: 9a466c78-74d9-4760-a15c-e4cf2942511b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 9a466c78-74d9-4760-a15c-e4cf2942511b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# df36ec19-0bef-467d-9b7e-8a3106fba5e8 This model is a fine-tuned version of [lmsys/vicuna-13b-v1.5](https://huggingface.co/lmsys/vicuna-13b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1308 | 0.0002 | 1 | 1.1573 | | 0.9154 | 0.0040 | 25 | 0.9314 | | 0.744 | 0.0080 | 50 | 0.8872 | | 0.8522 | 0.0121 | 75 | 0.8755 | | 0.8483 | 0.0161 | 100 | 0.8728 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1