esha111 commited on
Commit
6db8500
·
verified ·
1 Parent(s): 9bde053

End of training

Browse files
Files changed (2) hide show
  1. README.md +150 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ base_model: meta-llama/Meta-Llama-3-8B
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ library_name: peft
8
+ model-index:
9
+ - name: recipe-generator
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ base_model: meta-llama/Meta-Llama-3-8B
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ load_in_8bit: false
26
+ load_in_4bit: true
27
+ strict: false
28
+
29
+ datasets:
30
+ # This will be the path used for the data when it is saved to the Volume in the cloud.
31
+ - path: "data/recipe_training_dataset.jsonl"
32
+ ds_type: "json"
33
+ type:
34
+ # JSONL file contains question, context, answer fields per line.
35
+ # This gets mapped to instruction, input, output axolotl tags.
36
+ field_instruction: system
37
+ field_input: user
38
+ field_output: assistant
39
+ # Format is used by axolotl to generate the prompt.
40
+ format: |-
41
+ {input}
42
+ {instruction}
43
+ dataset_prepared_path:
44
+ val_set_size: 0
45
+ output_dir: ./outputs/qlora-out
46
+
47
+ adapter: qlora
48
+ lora_model_dir:
49
+
50
+ sequence_len: 4096
51
+ sample_packing: true
52
+ pad_to_sequence_len: true
53
+
54
+ lora_r: 32
55
+ lora_alpha: 16
56
+ lora_dropout: 0.05
57
+ lora_target_modules:
58
+ lora_target_linear: true
59
+ lora_fan_in_fan_out:
60
+
61
+ wandb_project:
62
+ wandb_entity:
63
+ wandb_watch:
64
+ wandb_name:
65
+ wandb_log_model:
66
+
67
+ gradient_accumulation_steps: 4
68
+ micro_batch_size: 2
69
+ num_epochs: 1
70
+ optimizer: paged_adamw_32bit
71
+ lr_scheduler: cosine
72
+ learning_rate: 0.0002
73
+
74
+ train_on_inputs: false
75
+ group_by_length: false
76
+ bf16: auto
77
+ fp16:
78
+ tf32: false
79
+
80
+ gradient_checkpointing: true
81
+ early_stopping_patience:
82
+ resume_from_checkpoint:
83
+ local_rank:
84
+ logging_steps: 1
85
+ xformers_attention:
86
+ flash_attention: true
87
+
88
+ warmup_steps: 10
89
+ evals_per_epoch: 4
90
+ eval_table_size:
91
+ saves_per_epoch: 1
92
+ debug:
93
+ deepspeed:
94
+ weight_decay: 0.0
95
+ fsdp:
96
+ fsdp_config:
97
+ special_tokens:
98
+ pad_token: "<|end_of_text|>"
99
+
100
+ hub_model_id: esha111/recipe-generator
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # recipe-generator
106
+
107
+ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
108
+
109
+ ## Model description
110
+
111
+ More information needed
112
+
113
+ ## Intended uses & limitations
114
+
115
+ More information needed
116
+
117
+ ## Training and evaluation data
118
+
119
+ More information needed
120
+
121
+ ## Training procedure
122
+
123
+ ### Training hyperparameters
124
+
125
+ The following hyperparameters were used during training:
126
+ - learning_rate: 0.0002
127
+ - train_batch_size: 2
128
+ - eval_batch_size: 2
129
+ - seed: 42
130
+ - distributed_type: multi-GPU
131
+ - num_devices: 2
132
+ - gradient_accumulation_steps: 4
133
+ - total_train_batch_size: 16
134
+ - total_eval_batch_size: 4
135
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
136
+ - lr_scheduler_type: cosine
137
+ - lr_scheduler_warmup_steps: 10
138
+ - num_epochs: 1
139
+
140
+ ### Training results
141
+
142
+
143
+
144
+ ### Framework versions
145
+
146
+ - PEFT 0.11.1
147
+ - Transformers 4.42.3
148
+ - Pytorch 2.3.0+cu121
149
+ - Datasets 2.19.1
150
+ - Tokenizers 0.19.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90e7e0e2a58080646d0b8e0ac5badb53665d82b712a8bf77bd31ee153e6d2288
3
+ size 167934026