--- license: apache-2.0 tags: - summarization - arabic - ar - en - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetuned-english-finetuned-english-arabic results: [] --- # mt5-base-finetuned-english-finetuned-english-arabic This model is a fine-tuned version of [eslamxm/mt5-base-finetuned-english](https://huggingface.co/eslamxm/mt5-base-finetuned-english) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.4788 - Rouge-1: 22.55 - Rouge-2: 9.84 - Rouge-l: 20.5 - Gen Len: 19.0 - Bertscore: 71.39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.999 | 1.0 | 1172 | 3.9343 | 17.67 | 5.93 | 15.86 | 19.0 | 69.69 | | 4.008 | 2.0 | 2344 | 3.6655 | 19.48 | 7.67 | 17.67 | 19.0 | 70.49 | | 3.7463 | 3.0 | 3516 | 3.5503 | 20.47 | 8.24 | 18.6 | 19.0 | 70.86 | | 3.5924 | 4.0 | 4688 | 3.4942 | 20.95 | 8.45 | 19.05 | 19.0 | 71.0 | | 3.4979 | 5.0 | 5860 | 3.4788 | 21.34 | 8.75 | 19.39 | 19.0 | 71.11 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1