File size: 21,758 Bytes
1721ded |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
# -*- coding: utf-8 -*-
"""-ai-msgbot-gpt-j-6b-8bit-with-hub.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/gist/pszemraj/e49c60aafe04acc52fcfdd1baefe12e4/-ai-msgbot-gpt-j-6b-8bit-with-hub.ipynb
# <center> ai-msgbot - conversational 6B GPT-J 8bit demo
> This notebook demos interaction with a 6B GPT-J finetuned for dialogue via methods in [ai-msgbot](https://github.com/pszemraj/ai-msgbot)
By [Peter](https://github.com/pszemraj). This notebook and `ai-msgbot` are [licensed under creative commons](https://github.com/pszemraj/ai-msgbot/blob/main/LICENSE). Models trained on given datasets are subject to those datasets' licenses.
## usage
1. select the checkpoint of the model to use for generation in the `model_checkpoint` dropdown
2. Run all cells to load everything
3. adjust the prompt fields at the bottom of the notebook to whatever you want, see how AI responds.
A fine-tuning example etc. will come _eventually_
---
# setup
"""
#@markdown setup logging
import logging
from pathlib import Path
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
das_logfile = Path.cwd() / "8bit_inference.log"
logging.basicConfig(
level=logging.INFO,
filename=das_logfile,
filemode='w',
format="%(asctime)s %(levelname)s %(message)s",
datefmt="%m/%d/%Y %I:%M:%S",
)
#@markdown add auto-Colab formatting with `IPython.display`
from IPython.display import HTML, display
# colab formatting
def set_css():
display(
HTML(
"""
<style>
pre {
white-space: pre-wrap;
}
</style>
"""
)
)
get_ipython().events.register("pre_run_cell", set_css)
from pathlib import Path
"""### GPU info"""
!nvidia-smi
"""## install and import
_this notebook uses a specific version of `torch` which can take a while to install._
"""
!pip install transformers==4.24.0 -q
!pip install bitsandbytes==0.32.2 -q
!pip install datasets==1.16.1 -q
!pip install torch==1.11 -q
!pip install accelerate==0.12.0 -q
!pip install pysbd==0.3.4 -q
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# import transformers
#
# import pandas as pd
#
# import torch
# import torch.nn.functional as F
# from torch import nn
# from torch.cuda.amp import custom_fwd, custom_bwd
#
# import bitsandbytes as bnb
# from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
#
# from tqdm.auto import tqdm
#@markdown utils
from transformers.utils.logging import set_verbosity
set_verbosity(40)
import warnings
# ignore hf pipeline complaints
warnings.filterwarnings("ignore", category=UserWarning, module='transformers')
"""## Converting the model to 8 bits
"""
#@title define 8bit classes
#@markdown - bitsandbytes lib
class FrozenBNBLinear(nn.Module):
def __init__(self, weight, absmax, code, bias=None):
assert isinstance(bias, nn.Parameter) or bias is None
super().__init__()
self.out_features, self.in_features = weight.shape
self.register_buffer("weight", weight.requires_grad_(False))
self.register_buffer("absmax", absmax.requires_grad_(False))
self.register_buffer("code", code.requires_grad_(False))
self.adapter = None
self.bias = bias
def forward(self, input):
output = DequantizeAndLinear.apply(
input, self.weight, self.absmax, self.code, self.bias
)
if self.adapter:
output += self.adapter(input)
return output
@classmethod
def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
weights_int8, state = quantize_blockise_lowmemory(linear.weight)
return cls(weights_int8, *state, linear.bias)
def __repr__(self):
return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"
class DequantizeAndLinear(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(
ctx,
input: torch.Tensor,
weights_quantized: torch.ByteTensor,
absmax: torch.FloatTensor,
code: torch.FloatTensor,
bias: torch.FloatTensor,
):
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
ctx.save_for_backward(input, weights_quantized, absmax, code)
ctx._has_bias = bias is not None
return F.linear(input, weights_deq, bias)
@staticmethod
@custom_bwd
def backward(ctx, grad_output: torch.Tensor):
assert (
not ctx.needs_input_grad[1]
and not ctx.needs_input_grad[2]
and not ctx.needs_input_grad[3]
)
input, weights_quantized, absmax, code = ctx.saved_tensors
# grad_output: [*batch, out_features]
weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
grad_input = grad_output @ weights_deq
grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
return grad_input, None, None, None, grad_bias
class FrozenBNBEmbedding(nn.Module):
def __init__(self, weight, absmax, code):
super().__init__()
self.num_embeddings, self.embedding_dim = weight.shape
self.register_buffer("weight", weight.requires_grad_(False))
self.register_buffer("absmax", absmax.requires_grad_(False))
self.register_buffer("code", code.requires_grad_(False))
self.adapter = None
def forward(self, input, **kwargs):
with torch.no_grad():
# note: both quantuized weights and input indices are *not* differentiable
weight_deq = dequantize_blockwise(
self.weight, absmax=self.absmax, code=self.code
)
output = F.embedding(input, weight_deq, **kwargs)
if self.adapter:
output += self.adapter(input)
return output
@classmethod
def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
return cls(weights_int8, *state)
def __repr__(self):
return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"
def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2**20):
assert chunk_size % 4096 == 0
code = None
chunks = []
absmaxes = []
flat_tensor = matrix.view(-1)
for i in range((matrix.numel() - 1) // chunk_size + 1):
input_chunk = flat_tensor[i * chunk_size : (i + 1) * chunk_size].clone()
quantized_chunk, (absmax_chunk, code) = quantize_blockwise(
input_chunk, code=code
)
chunks.append(quantized_chunk)
absmaxes.append(absmax_chunk)
matrix_i8 = torch.cat(chunks).reshape_as(matrix)
absmax = torch.cat(absmaxes)
return matrix_i8, (absmax, code)
def convert_to_int8(model):
"""Convert linear and embedding modules to 8-bit with optional adapters"""
for module in list(model.modules()):
for name, child in module.named_children():
if isinstance(child, nn.Linear):
print(name, child)
setattr(
module,
name,
FrozenBNBLinear(
weight=torch.zeros(
child.out_features, child.in_features, dtype=torch.uint8
),
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
code=torch.zeros(256),
bias=child.bias,
),
)
elif isinstance(child, nn.Embedding):
setattr(
module,
name,
FrozenBNBEmbedding(
weight=torch.zeros(
child.num_embeddings, child.embedding_dim, dtype=torch.uint8
),
absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
code=torch.zeros(256),
),
)
#@markdown Patch GPT-J before loading:
class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self.attn)
convert_to_int8(self.mlp)
class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
def __init__(self, config):
super().__init__(config)
convert_to_int8(self)
transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock
# Commented out IPython magic to ensure Python compatibility.
# %%capture
# #@markdown `add_adapters()`
#
# def add_adapters(model, adapter_dim=4, p = 0.1):
# assert adapter_dim > 0
#
# for name, module in model.named_modules():
# if isinstance(module, FrozenBNBLinear):
# if "attn" in name or "mlp" in name or "head" in name:
# print("Adding adapter to", name)
# module.adapter = nn.Sequential(
# nn.Linear(module.in_features, adapter_dim, bias=False),
# nn.Dropout(p=p),
# nn.Linear(adapter_dim, module.out_features, bias=False),
# )
# print("Initializing", name)
# nn.init.zeros_(module.adapter[2].weight)
#
# else:
# print("Not adding adapter to", name)
# elif isinstance(module, FrozenBNBEmbedding):
# print("Adding adapter to", name)
# module.adapter = nn.Sequential(
# nn.Embedding(module.num_embeddings, adapter_dim),
# nn.Dropout(p=p),
# nn.Linear(adapter_dim, module.embedding_dim, bias=False),
# )
# print("Initializing", name)
# nn.init.zeros_(module.adapter[2].weight)
#
#@markdown set up config
config = transformers.GPTJConfig.from_pretrained("hivemind/gpt-j-6B-8bit")
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
config.pad_token_id = config.eos_token_id
tokenizer.pad_token = config.pad_token_id
"""# load model
"""
from contextlib import contextmanager
import sys, os, gc
import logging
from tqdm.auto import tqdm
#@markdown define `load_8bit_from_hub()`
@contextmanager
def suppress_stdout():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def load_8bit_from_hub(model_id:str, **kwargs):
pbar = tqdm(desc="instantiating model..", total=3)
with suppress_stdout():
gc.collect()
model = GPTJForCausalLM.from_pretrained(model_id,
device_map='auto',
low_cpu_mem_usage=True,
**kwargs)
pbar.update()
add_adapters(model)
pbar.update()
model = model.to("cuda" if torch.cuda.is_available() else -1)
pbar.update()
return model
#@title <font color="orange"> Select Model to Load </font>
model_name = "ethzanalytics/gpt-j-8bit-KILT_WoW_10k_steps" #@param ["ethzanalytics/gpt-j-8bit-KILT_WoW_10k_steps", "ethzanalytics/gpt-j-8bit-daily_dialogues", "ethzanalytics/gpt-j-6B-8bit-sharded"]
# load_8bit_from_hub() is a wrapper around AutoModel.from_pretrained() and will
# passthrough all kwargs to that
model = load_8bit_from_hub(model_name,)
"""# generate text
## standard generation
`
with torch:
> with "standard" generation it's recommended to put the **speaker token labels** at the end of your prompt so the model "knows" to respond.
i.e `Person Alpha:` or `Person Beta:` for these two models.
"""
prompt = "Person Alpha: what is the theory of being \"woke\" all about?\\n Person Beta: " # @param {type:"string"}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
with torch.no_grad():
prompt = tokenizer(prompt, return_tensors="pt")
prompt = {key: value.to(device) for key, value in prompt.items()}
out = model.generate(
**prompt,
min_length=24,
max_length=96,
top_k=30,
top_p=0.9,
temperature=0.4,
do_sample=True,
repetition_penalty=1.2,
no_repeat_ngram_size=3,
pad_token_id=tokenizer.eos_token_id,
)
result = tokenizer.decode(
out[0],
remove_invalid_values=True,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
result
"""---
## 'Extract' bot response
- transformers `pipeline` object
- generate with better params
- extract the bot's response with `get_bot_response()` - start to use [ai-msgbot](https://github.com/pszemraj/ai-msgbot) _like it was meant to be used_
"""
from transformers import pipeline
generator = pipeline(
"text-generation",
model=model,
tokenizer="EleutherAI/gpt-j-6B",
device= 0 if torch.cuda.is_available() else -1,
)
"""### generation functions
for extracting the response, beam search vs. sampling, etc
"""
# @markdown `get_bot_response(name_resp: str, model_resp: list, name_spk: str, verbose: bool = False)`
# @markdown - this extracts the response from "Person Beta" from the total generation
import pysbd
seg = pysbd.Segmenter(language="en", clean=False)
import re
def split_sentences(text, use_regex=False, min_len=2):
"""given a string, splits it into sentences based on punctuation marks."""
if use_regex:
sentences = re.split(r'(?<=[.!?]) +', string)
else:
# https://github.com/nipunsadvilkar/pySBD
sentences = seg.segment(text)
return [s.strip() for s in sentences if len(s.strip()) > min_len]
def validate_response(response_text):
if isinstance(response_text, list):
return response_text
# if len(response_text) > 1 else split_sentences(str(response_text))
elif isinstance(response_text, str):
return split_sentences(response_text)
else:
raise ValueError(f"response input {response_text} not a list or str..")
def get_bot_response(
name_resp: str, model_resp: list, name_spk: str, verbose: bool = False
):
"""
get_bot_response - gets the bot response to a prompt, checking to ensure that additional statements by the "speaker" are not included in the response.
Args:
name_resp (str): the name of the responder
model_resp (list): the model response
name_spk (str): the name of the speaker
verbose (bool, optional): Defaults to False.
Returns:
bot_response (str): the bot response, isolated down to just text without the "name tokens" or further messages from the speaker.
"""
model_resp = validate_response(model_resp)
logging.info(f"isolating response from:\t{model_resp}")
fn_resp = []
name_counter = 0
break_safe = False
for resline in model_resp:
if name_resp.lower() in resline.lower():
name_counter += 1
break_safe = True
continue
if ":" in resline and name_resp.lower() not in resline.lower():
break
if name_spk.lower() in resline.lower() and not break_safe:
break
else:
fn_resp.append(resline)
if verbose:
print("the full response is:\n")
print("\n".join(fn_resp))
if isinstance(fn_resp, list):
fn_resp = fn_resp[0] if len(fn_resp) == 1 else " ".join(fn_resp)
return fn_resp
import pprint as pp
# @markdown define `generate_sampling(prompt: str, ...)`
def generate_sampling(
prompt: str,
suffix:str=None,
temperature=0.4,
top_k: int = 40,
top_p=0.90,
min_length: int = 16,
max_length: int = 128,
no_repeat_ngram_size: int = 3,
repetition_penalty=1.5,
return_full_text=False,
verbose=False,
**kwargs,
) -> None:
logging.info(f"generating results for input:\n\t{prompt}\n\t...")
if verbose:
print(f"generating results for input:\n\t{prompt}\n\t...")
prompt = f"{prompt}{suffix}" if suffix is not None else prompt
_prompt_tokens = len(generator.tokenizer(prompt).input_ids)
result = generator(
prompt,
min_length=min_length+_prompt_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
no_repeat_ngram_size=no_repeat_ngram_size,
repetition_penalty=repetition_penalty,
remove_invalid_values=True,
clean_up_tokenization_spaces=True,
do_sample=True,
return_full_text=return_full_text,
max_new_tokens=max_length+_prompt_tokens,
pad_token_id=generator.tokenizer.eos_token_id,
**kwargs,
)
output = result[0]["generated_text"]
logging.info(f"model output:\n\t{output}")
if verbose:
print(f"model output:\n\t{output}")
response = get_bot_response(
model_resp=output,
name_spk="Person Alpha",
name_resp="Person Beta",
verbose=False,
)
logging.info(f"extracted bot response:\n\t{response}")
pp.pprint(response)
return response
import pprint as pp
#@markdown define `generate_beams(prompt: str, num_beams:int =4, ...)`
def generate_beams(
prompt: str,
suffix:str=None,
num_beams=4,
min_length: int = 32,
max_length: int = 128,
no_repeat_ngram_size: int = 3,
repetition_penalty=2.5,
return_full_text=False,
verbose=False,
**kwargs,
) -> None:
logging.info(f"generating results for input:\n\t{prompt}\n\t...")
if verbose:
print(f"generating results for input:\n\t{prompt}\n\t")
prompt = f"{prompt}{suffix}" if suffix is not None else prompt
_prompt_tokens = len(generator.tokenizer(prompt).input_ids)
result = generator(
prompt,
min_length=min_length+_prompt_tokens,
num_beams=num_beams,
do_sample=False,
early_stopping=True,
no_repeat_ngram_size=no_repeat_ngram_size,
repetition_penalty=repetition_penalty,
remove_invalid_values=True,
clean_up_tokenization_spaces=True,
return_full_text=return_full_text,
max_new_tokens=max_length+_prompt_tokens,
pad_token_id=generator.tokenizer.eos_token_id,
**kwargs,
)
output = result[0]["generated_text"]
logging.info(f"model output:\n\t{output}")
if verbose:
print(f"model output:\n\t{output}")
response = get_bot_response(
model_resp=output,
name_spk="Person Alpha",
name_resp="Person Beta",
verbose=False,
)
logging.info(f"extracted bot response:\n\t{response}")
pp.pprint(response)
return response
import pprint as pp
#@markdown define `generate_csearch(prompt: str, num_beams:int =4, ...)`
def generate_csearch(
prompt: str,
suffix:str=None,
max_length: int = 96,
min_length: int = 24,
penalty_alpha: float=0.6,
top_k: int=5,
return_full_text=False,
verbose=False,
**kwargs,
) -> None:
logging.info(f"generating results for input:\n\t{prompt}\n\t...")
if verbose:
print(f"generating results for input:\n\t{prompt}\n\t")
prompt = f"{prompt}{suffix}" if suffix is not None else prompt
_prompt_tokens = len(generator.tokenizer(prompt).input_ids)
result = generator(
prompt,
min_length=min_length+_prompt_tokens,
max_new_tokens=max_length,
penalty_alpha=penalty_alpha,
top_k=top_k,
remove_invalid_values=True,
clean_up_tokenization_spaces=True,
return_full_text=return_full_text,
pad_token_id=generator.tokenizer.eos_token_id,
**kwargs,
)
output = result[0]["generated_text"]
logging.info(f"model output:\n\t{output}")
if verbose:
print(f"model output:\n\t{output}")
response = get_bot_response(
model_resp=output,
name_spk="Person Alpha",
name_resp="Person Beta",
verbose=False,
)
logging.info(f"extracted bot response:\n\t{response}")
pp.pprint(response)
return response
"""### generate - sampling
> **NOTE:** that here the `suffix="\nPerson Beta: ",` is passed so it does not need to be added to a prompt
"""
# Commented out IPython magic to ensure Python compatibility.
# %%time
#
# prompt = "How do we harness space energy?" #@param {type:"string"}
# temperature = 0.2 #@param {type:"slider", min:0.1, max:1, step:0.1}
# top_k = 30 #@param {type:"slider", min:10, max:60, step:10}
#
#
# result = generate_sampling(
# prompt,
# suffix="\nPerson Beta: ",
# max_length=128,
# min_length=32,
# temperature=temperature,
# top_k=top_k,
# )
#
prompt = "What is the purpose of life?" # @param {type:"string"}
temperature = 0.5 # @param {type:"slider", min:0.1, max:1, step:0.1}
top_k = 30 # @param {type:"slider", min:10, max:60, step:10}
generated_result = generate_sampling(
prompt,
temperature=temperature,
top_k=top_k,
min_length=32,
suffix="\nPerson Beta: ",
)
"""### generate - beam search"""
# Commented out IPython magic to ensure Python compatibility.
# %%time
# prompt = "How was your day?" #@param {type:"string"}
# num_beams = 4 #@param {type:"slider", min:2, max:10, step:2}
# min_length = 16 #@param {type:"slider", min:8, max:128, step:8}
#
# generated_result = generate_beams(
# prompt,
# suffix="\nPerson Beta: ",
# min_length=min_length,
# num_beams=num_beams,
# ) |