File size: 21,758 Bytes
1721ded
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
# -*- coding: utf-8 -*-
"""-ai-msgbot-gpt-j-6b-8bit-with-hub.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/gist/pszemraj/e49c60aafe04acc52fcfdd1baefe12e4/-ai-msgbot-gpt-j-6b-8bit-with-hub.ipynb

# <center> ai-msgbot - conversational 6B GPT-J 8bit demo


> This notebook demos interaction with a 6B GPT-J finetuned for dialogue via methods in [ai-msgbot](https://github.com/pszemraj/ai-msgbot)


By [Peter](https://github.com/pszemraj). This notebook and `ai-msgbot` are [licensed under creative commons](https://github.com/pszemraj/ai-msgbot/blob/main/LICENSE). Models trained on given datasets are subject to those datasets' licenses.
  

## usage

1. select the checkpoint of the model to use for generation in the `model_checkpoint` dropdown
2. Run all cells to load everything
3. adjust the prompt fields at the bottom of the notebook to whatever you want, see how AI responds.


A fine-tuning example etc. will come _eventually_


---

# setup
"""

#@markdown setup logging
import logging
from pathlib import Path
for handler in logging.root.handlers[:]:
    logging.root.removeHandler(handler)
    
das_logfile = Path.cwd() / "8bit_inference.log"

logging.basicConfig(
    level=logging.INFO,
    filename=das_logfile,
    filemode='w',
    format="%(asctime)s %(levelname)s %(message)s",
    datefmt="%m/%d/%Y %I:%M:%S",
)

#@markdown add auto-Colab formatting with `IPython.display`
from IPython.display import HTML, display
# colab formatting
def set_css():
    display(
        HTML(
            """
  <style>
    pre {
        white-space: pre-wrap;
    }
  </style>
  """
        )
    )

get_ipython().events.register("pre_run_cell", set_css)

from pathlib import Path

"""### GPU info"""

!nvidia-smi

"""## install and import

_this notebook uses a specific version of `torch` which can take a while to install._
"""

!pip install transformers==4.24.0 -q
!pip install bitsandbytes==0.32.2 -q
!pip install datasets==1.16.1 -q
!pip install torch==1.11 -q
!pip install accelerate==0.12.0 -q
!pip install pysbd==0.3.4 -q

# Commented out IPython magic to ensure Python compatibility.
# %%capture
# import transformers
# 
# import pandas as pd
# 
# import torch
# import torch.nn.functional as F
# from torch import nn
# from torch.cuda.amp import custom_fwd, custom_bwd
# 
# import bitsandbytes as bnb
# from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise
# 
# from tqdm.auto import tqdm

#@markdown utils
from transformers.utils.logging import set_verbosity

set_verbosity(40)

import warnings
# ignore hf pipeline complaints
warnings.filterwarnings("ignore", category=UserWarning, module='transformers')

"""## Converting the model to 8 bits

"""

#@title define 8bit classes 

#@markdown - bitsandbytes lib
class FrozenBNBLinear(nn.Module):
    def __init__(self, weight, absmax, code, bias=None):
        assert isinstance(bias, nn.Parameter) or bias is None
        super().__init__()
        self.out_features, self.in_features = weight.shape
        self.register_buffer("weight", weight.requires_grad_(False))
        self.register_buffer("absmax", absmax.requires_grad_(False))
        self.register_buffer("code", code.requires_grad_(False))
        self.adapter = None
        self.bias = bias

    def forward(self, input):
        output = DequantizeAndLinear.apply(
            input, self.weight, self.absmax, self.code, self.bias
        )
        if self.adapter:
            output += self.adapter(input)
        return output

    @classmethod
    def from_linear(cls, linear: nn.Linear) -> "FrozenBNBLinear":
        weights_int8, state = quantize_blockise_lowmemory(linear.weight)
        return cls(weights_int8, *state, linear.bias)

    def __repr__(self):
        return f"{self.__class__.__name__}({self.in_features}, {self.out_features})"


class DequantizeAndLinear(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(
        ctx,
        input: torch.Tensor,
        weights_quantized: torch.ByteTensor,
        absmax: torch.FloatTensor,
        code: torch.FloatTensor,
        bias: torch.FloatTensor,
    ):
        weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
        ctx.save_for_backward(input, weights_quantized, absmax, code)
        ctx._has_bias = bias is not None
        return F.linear(input, weights_deq, bias)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_output: torch.Tensor):
        assert (
            not ctx.needs_input_grad[1]
            and not ctx.needs_input_grad[2]
            and not ctx.needs_input_grad[3]
        )
        input, weights_quantized, absmax, code = ctx.saved_tensors
        # grad_output: [*batch, out_features]
        weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)
        grad_input = grad_output @ weights_deq
        grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None
        return grad_input, None, None, None, grad_bias


class FrozenBNBEmbedding(nn.Module):
    def __init__(self, weight, absmax, code):
        super().__init__()
        self.num_embeddings, self.embedding_dim = weight.shape
        self.register_buffer("weight", weight.requires_grad_(False))
        self.register_buffer("absmax", absmax.requires_grad_(False))
        self.register_buffer("code", code.requires_grad_(False))
        self.adapter = None

    def forward(self, input, **kwargs):
        with torch.no_grad():
            # note: both quantuized weights and input indices are *not* differentiable
            weight_deq = dequantize_blockwise(
                self.weight, absmax=self.absmax, code=self.code
            )
            output = F.embedding(input, weight_deq, **kwargs)
        if self.adapter:
            output += self.adapter(input)
        return output

    @classmethod
    def from_embedding(cls, embedding: nn.Embedding) -> "FrozenBNBEmbedding":
        weights_int8, state = quantize_blockise_lowmemory(embedding.weight)
        return cls(weights_int8, *state)

    def __repr__(self):
        return f"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})"


def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2**20):
    assert chunk_size % 4096 == 0
    code = None
    chunks = []
    absmaxes = []
    flat_tensor = matrix.view(-1)
    for i in range((matrix.numel() - 1) // chunk_size + 1):
        input_chunk = flat_tensor[i * chunk_size : (i + 1) * chunk_size].clone()
        quantized_chunk, (absmax_chunk, code) = quantize_blockwise(
            input_chunk, code=code
        )
        chunks.append(quantized_chunk)
        absmaxes.append(absmax_chunk)
    matrix_i8 = torch.cat(chunks).reshape_as(matrix)
    absmax = torch.cat(absmaxes)
    return matrix_i8, (absmax, code)


def convert_to_int8(model):
    """Convert linear and embedding modules to 8-bit with optional adapters"""
    for module in list(model.modules()):
        for name, child in module.named_children():
            if isinstance(child, nn.Linear):
                print(name, child)
                setattr(
                    module,
                    name,
                    FrozenBNBLinear(
                        weight=torch.zeros(
                            child.out_features, child.in_features, dtype=torch.uint8
                        ),
                        absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
                        code=torch.zeros(256),
                        bias=child.bias,
                    ),
                )
            elif isinstance(child, nn.Embedding):
                setattr(
                    module,
                    name,
                    FrozenBNBEmbedding(
                        weight=torch.zeros(
                            child.num_embeddings, child.embedding_dim, dtype=torch.uint8
                        ),
                        absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),
                        code=torch.zeros(256),
                    ),
                )

#@markdown Patch GPT-J before loading: 


class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):
    def __init__(self, config):
        super().__init__(config)

        convert_to_int8(self.attn)
        convert_to_int8(self.mlp)


class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):
    def __init__(self, config):
        super().__init__(config)
        convert_to_int8(self)
        

class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):
    def __init__(self, config):
        super().__init__(config)
        convert_to_int8(self)


transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock

# Commented out IPython magic to ensure Python compatibility.
# %%capture
# #@markdown `add_adapters()`
# 
# def add_adapters(model, adapter_dim=4, p = 0.1):
#     assert adapter_dim > 0
# 
#     for name, module in model.named_modules():
#       if isinstance(module, FrozenBNBLinear):
#           if "attn" in name or "mlp" in name or "head" in name:
#               print("Adding adapter to", name)
#               module.adapter = nn.Sequential(
#                 nn.Linear(module.in_features, adapter_dim, bias=False),
#                 nn.Dropout(p=p),
#                 nn.Linear(adapter_dim, module.out_features, bias=False),
#             )
#               print("Initializing", name)
#               nn.init.zeros_(module.adapter[2].weight)
# 
#           else:
#               print("Not adding adapter to", name)
#       elif isinstance(module, FrozenBNBEmbedding):
#           print("Adding adapter to", name)
#           module.adapter = nn.Sequential(
#                 nn.Embedding(module.num_embeddings, adapter_dim),
#                 nn.Dropout(p=p),
#                 nn.Linear(adapter_dim, module.embedding_dim, bias=False),
#             )
#           print("Initializing", name)
#           nn.init.zeros_(module.adapter[2].weight)
#

#@markdown set up config
config = transformers.GPTJConfig.from_pretrained("hivemind/gpt-j-6B-8bit")
tokenizer = transformers.AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
config.pad_token_id = config.eos_token_id
tokenizer.pad_token = config.pad_token_id

"""# load model

"""

from contextlib import contextmanager
import sys, os, gc
import logging
from tqdm.auto import tqdm
#@markdown define `load_8bit_from_hub()`

@contextmanager
def suppress_stdout():
    with open(os.devnull, "w") as devnull:
        old_stdout = sys.stdout
        sys.stdout = devnull
        try:
            yield
        finally:
            sys.stdout = old_stdout

def load_8bit_from_hub(model_id:str, **kwargs):
    pbar = tqdm(desc="instantiating model..", total=3)

    with suppress_stdout():
        gc.collect()
        model = GPTJForCausalLM.from_pretrained(model_id,
                                                device_map='auto',
                                                low_cpu_mem_usage=True,
                                                **kwargs)
        pbar.update()
        add_adapters(model)
        pbar.update()
    model = model.to("cuda" if torch.cuda.is_available() else -1)
    pbar.update()
    return model

#@title <font color="orange"> Select Model to Load </font>
model_name = "ethzanalytics/gpt-j-8bit-KILT_WoW_10k_steps" #@param ["ethzanalytics/gpt-j-8bit-KILT_WoW_10k_steps", "ethzanalytics/gpt-j-8bit-daily_dialogues", "ethzanalytics/gpt-j-6B-8bit-sharded"]

# load_8bit_from_hub() is a wrapper around AutoModel.from_pretrained() and will
# passthrough all kwargs to that
model = load_8bit_from_hub(model_name,)

"""# generate text

## standard generation 
`

with torch:

> with "standard" generation it's recommended to put the **speaker token labels** at the end of your prompt so the model "knows" to respond.

i.e `Person Alpha:` or `Person Beta:` for these two models.
"""

prompt = "Person Alpha: what is the theory of being \"woke\" all about?\\n Person Beta:  "  # @param {type:"string"}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
with torch.no_grad():
    prompt = tokenizer(prompt, return_tensors="pt")
    prompt = {key: value.to(device) for key, value in prompt.items()}
    out = model.generate(
        **prompt,
        min_length=24,
        max_length=96,
        top_k=30,
        top_p=0.9,
        temperature=0.4,
        do_sample=True,
        repetition_penalty=1.2,
        no_repeat_ngram_size=3,
        pad_token_id=tokenizer.eos_token_id,
    )
    result = tokenizer.decode(
        out[0],
        remove_invalid_values=True,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=True,
    )
result

"""---

## 'Extract' bot response 
- transformers `pipeline` object
- generate with better params
- extract the bot's response with `get_bot_response()` - start to use [ai-msgbot](https://github.com/pszemraj/ai-msgbot) _like it was meant to be used_
"""

from transformers import pipeline 

generator = pipeline(
    "text-generation",
    model=model,
    tokenizer="EleutherAI/gpt-j-6B",
    device= 0 if torch.cuda.is_available() else -1,
)

"""### generation functions

for extracting the response, beam search vs. sampling, etc
"""

# @markdown `get_bot_response(name_resp: str, model_resp: list, name_spk: str, verbose: bool = False)`
# @markdown - this extracts the response from "Person Beta" from the total generation
import pysbd

seg = pysbd.Segmenter(language="en", clean=False)

import re


def split_sentences(text, use_regex=False, min_len=2):
    """given a string, splits it into sentences based on punctuation marks."""

    if use_regex:
        sentences = re.split(r'(?<=[.!?]) +', string)
    else:
        # https://github.com/nipunsadvilkar/pySBD
        sentences = seg.segment(text)
    return [s.strip() for s in sentences if len(s.strip()) > min_len]


def validate_response(response_text):

    if isinstance(response_text, list):

        return response_text
        # if len(response_text) > 1 else split_sentences(str(response_text))
    elif isinstance(response_text, str):
        return split_sentences(response_text)
    else:
        raise ValueError(f"response input {response_text} not a list or str..")


def get_bot_response(
    name_resp: str, model_resp: list, name_spk: str, verbose: bool = False
):
    """
    get_bot_response - gets the bot response to a prompt, checking to ensure that additional statements by the "speaker" are not included in the response.
    Args:
        name_resp (str): the name of the responder
        model_resp (list): the model response
        name_spk (str): the name of the speaker
        verbose (bool, optional): Defaults to False.
    Returns:
        bot_response (str): the bot response, isolated down to just text without the "name tokens" or further messages from the speaker.
    """

    model_resp = validate_response(model_resp)
    logging.info(f"isolating response from:\t{model_resp}")
    fn_resp = []

    name_counter = 0
    break_safe = False
    for resline in model_resp:
        if name_resp.lower() in resline.lower():
            name_counter += 1
            break_safe = True
            continue
        if ":" in resline and name_resp.lower() not in resline.lower():
            break
        if name_spk.lower() in resline.lower() and not break_safe:
            break
        else:
            fn_resp.append(resline)
    if verbose:
        print("the full response is:\n")
        print("\n".join(fn_resp))
    if isinstance(fn_resp, list):
        fn_resp = fn_resp[0] if len(fn_resp) == 1 else " ".join(fn_resp)
    return fn_resp

import pprint as pp

# @markdown define `generate_sampling(prompt: str, ...)`


def generate_sampling(
    prompt: str,
    suffix:str=None,
    temperature=0.4,
    top_k: int = 40,
    top_p=0.90,
    min_length: int = 16,
    max_length: int = 128,
    no_repeat_ngram_size: int = 3,
    repetition_penalty=1.5,
    return_full_text=False,
    verbose=False,
    **kwargs,
) -> None:

    logging.info(f"generating results for input:\n\t{prompt}\n\t...")
    if verbose:
        print(f"generating results for input:\n\t{prompt}\n\t...")
    prompt = f"{prompt}{suffix}" if suffix is not None else prompt
    
    _prompt_tokens = len(generator.tokenizer(prompt).input_ids)
    result = generator(
        prompt,
        min_length=min_length+_prompt_tokens,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        no_repeat_ngram_size=no_repeat_ngram_size,
        repetition_penalty=repetition_penalty,
        remove_invalid_values=True,
        clean_up_tokenization_spaces=True,
        do_sample=True,
        return_full_text=return_full_text,
        max_new_tokens=max_length+_prompt_tokens,
        pad_token_id=generator.tokenizer.eos_token_id,
        **kwargs,
    )

    output = result[0]["generated_text"]
    logging.info(f"model output:\n\t{output}")
    if verbose:
        print(f"model output:\n\t{output}")
    response = get_bot_response(
        model_resp=output,
        name_spk="Person Alpha",
        name_resp="Person Beta",
        verbose=False,
    )

    logging.info(f"extracted bot response:\n\t{response}")

    pp.pprint(response)

    return response

import pprint as pp

#@markdown define `generate_beams(prompt: str, num_beams:int =4, ...)`


def generate_beams(
    prompt: str,
    suffix:str=None,
    num_beams=4,
    min_length: int = 32,
    max_length: int = 128,
    no_repeat_ngram_size: int = 3,
    repetition_penalty=2.5,
    return_full_text=False,
    verbose=False,
    **kwargs,
) -> None:

    logging.info(f"generating results for input:\n\t{prompt}\n\t...")
    if verbose:
        print(f"generating results for input:\n\t{prompt}\n\t")

    prompt = f"{prompt}{suffix}" if suffix is not None else prompt
    _prompt_tokens = len(generator.tokenizer(prompt).input_ids)
    result = generator(
        prompt,
        min_length=min_length+_prompt_tokens,
        num_beams=num_beams,
        do_sample=False,
        early_stopping=True,
        no_repeat_ngram_size=no_repeat_ngram_size,
        repetition_penalty=repetition_penalty,
        remove_invalid_values=True,
        clean_up_tokenization_spaces=True,
        return_full_text=return_full_text,
        max_new_tokens=max_length+_prompt_tokens,
        pad_token_id=generator.tokenizer.eos_token_id,
        **kwargs,
    )

    output = result[0]["generated_text"]
    logging.info(f"model output:\n\t{output}")
    if verbose:
        print(f"model output:\n\t{output}")
    response = get_bot_response(
        model_resp=output,
        name_spk="Person Alpha",
        name_resp="Person Beta",
        verbose=False,
    )


    logging.info(f"extracted bot response:\n\t{response}")

    pp.pprint(response)

    return response

import pprint as pp

#@markdown define `generate_csearch(prompt: str, num_beams:int =4, ...)`


def generate_csearch(
    prompt: str,
    suffix:str=None,
    max_length: int = 96, 
    min_length: int = 24, 
    penalty_alpha: float=0.6,
    top_k: int=5,
    return_full_text=False,
    verbose=False,
    **kwargs,
) -> None:

    logging.info(f"generating results for input:\n\t{prompt}\n\t...")
    if verbose:
        print(f"generating results for input:\n\t{prompt}\n\t")

    prompt = f"{prompt}{suffix}" if suffix is not None else prompt
    _prompt_tokens = len(generator.tokenizer(prompt).input_ids)
    result = generator(
        prompt,
        min_length=min_length+_prompt_tokens,
        max_new_tokens=max_length,
        penalty_alpha=penalty_alpha,
        top_k=top_k,
        remove_invalid_values=True,
        clean_up_tokenization_spaces=True,
        return_full_text=return_full_text,
        pad_token_id=generator.tokenizer.eos_token_id,
        **kwargs,
    )

    output = result[0]["generated_text"]
    logging.info(f"model output:\n\t{output}")
    if verbose:
        print(f"model output:\n\t{output}")
    response = get_bot_response(
        model_resp=output,
        name_spk="Person Alpha",
        name_resp="Person Beta",
        verbose=False,
    )


    logging.info(f"extracted bot response:\n\t{response}")

    pp.pprint(response)

    return response

"""### generate - sampling

> **NOTE:** that here the `suffix="\nPerson Beta: ",` is passed so it does not need to be added to a prompt
"""

# Commented out IPython magic to ensure Python compatibility.
# %%time
# 
# prompt = "How do we harness space energy?" #@param {type:"string"}
# temperature = 0.2 #@param {type:"slider", min:0.1, max:1, step:0.1}
# top_k = 30 #@param {type:"slider", min:10, max:60, step:10}
# 
# 
# result = generate_sampling(
#     prompt,
#     suffix="\nPerson Beta: ",
#     max_length=128,
#     min_length=32,
#     temperature=temperature,
#     top_k=top_k,
#     )
#

prompt = "What is the purpose of life?"  # @param {type:"string"}
temperature = 0.5  # @param {type:"slider", min:0.1, max:1, step:0.1}
top_k = 30  # @param {type:"slider", min:10, max:60, step:10}

generated_result = generate_sampling(
    prompt,
    temperature=temperature,
    top_k=top_k,
    min_length=32,
    suffix="\nPerson Beta: ",
)

"""### generate - beam search"""

# Commented out IPython magic to ensure Python compatibility.
# %%time
# prompt = "How was your day?" #@param {type:"string"}
# num_beams = 4 #@param {type:"slider", min:2, max:10, step:2}
# min_length = 16 #@param {type:"slider", min:8, max:128, step:8}
# 
# generated_result = generate_beams(
#                     prompt,
#                     suffix="\nPerson Beta: ",
#                     min_length=min_length,
#                     num_beams=num_beams,
#                 )