File size: 1,835 Bytes
ef3e802 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: xlm-roberta-ner-ja-v5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-ner-ja-v5
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0556
- Precision: 0.9131
- Recall: 0.9879
- F1-score: 0.9490
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|
| 0.0888 | 1.0 | 837 | 0.0424 | 0.9014 | 0.9697 | 0.9343 |
| 0.0438 | 2.0 | 1674 | 0.0428 | 0.8647 | 0.9851 | 0.9210 |
| 0.0293 | 3.0 | 2511 | 0.0467 | 0.8746 | 0.9713 | 0.9205 |
| 0.0185 | 4.0 | 3348 | 0.0484 | 0.8707 | 0.9758 | 0.9203 |
| 0.0117 | 5.0 | 4185 | 0.0556 | 0.9131 | 0.9879 | 0.9490 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.0.1+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2
|