Update README.md
Browse files
README.md
CHANGED
@@ -47,12 +47,21 @@ image = Image.open(requests.get(url, stream=True).raw)
|
|
47 |
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-101-panoptic')
|
48 |
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-101-panoptic')
|
49 |
|
|
|
50 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
|
|
|
|
51 |
outputs = model(**inputs)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
```
|
57 |
|
58 |
Currently, both the feature extractor and model support PyTorch.
|
|
|
47 |
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-101-panoptic')
|
48 |
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-101-panoptic')
|
49 |
|
50 |
+
# prepare inputs for the model
|
51 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
52 |
+
|
53 |
+
# forward pass
|
54 |
outputs = model(**inputs)
|
55 |
+
|
56 |
+
# use the `post_process_panoptic` method of `DetrFeatureExtractor` to convert to COCO format
|
57 |
+
processed_sizes = torch.as_tensor(inputs["pixel_values"].shape[-2:]).unsqueeze(0)
|
58 |
+
result = feature_extractor.post_process_panoptic(outputs, processed_sizes)[0]
|
59 |
+
|
60 |
+
# the segmentation is stored in a special-format png
|
61 |
+
panoptic_seg = Image.open(io.BytesIO(result["png_string"]))
|
62 |
+
panoptic_seg = numpy.array(panoptic_seg, dtype=numpy.uint8)
|
63 |
+
# retrieve the ids corresponding to each mask
|
64 |
+
panoptic_seg_id = rgb_to_id(panoptic_seg)
|
65 |
```
|
66 |
|
67 |
Currently, both the feature extractor and model support PyTorch.
|