ccsasuke commited on
Commit
13812cf
·
1 Parent(s): b9bdfd9

Initial commit

Browse files
README.md CHANGED
@@ -1,3 +1,38 @@
1
  ---
2
- license: cc-by-nc-4.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - feature-extraction
4
+ pipeline_tag: feature-extraction
5
  ---
6
+ DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON:
7
+ Diverse Augmentation Towards Generalizable Dense Retrieval](\url). The associated GitHub repository is available here https://github.com/facebookresearch/dpr-scale/tree/dragon. We use asymmetric dual encoder, with two distinctly parameterized encoders.
8
+ The following models are also available:
9
+ Model | Initialization | Query Encoder Path | Context Encoder Path
10
+ |---|---|---|---
11
+ DRAGON+ | Shitao/RetroMAE| facebook/dragon-plus-query-encoder | facebook/dragon-plus-context-encoder
12
+
13
+ ## Usage (HuggingFace Transformers)
14
+ Using the model directly available in HuggingFace transformers .
15
+
16
+ ```python
17
+ import torch
18
+ from transformers import AutoTokenizer, AutoModel
19
+ tokenizer = AutoTokenizer.from_pretrained('facebook/dragon-plus-query-encoder')
20
+ query_encoder = AutoModel.from_pretrained('facebook/dragon-plus-query-encoder')
21
+ context_encoder = AutoModel.from_pretrained('facebook/dragon-plus-context-encoder')
22
+
23
+ # We use msmarco query and passages as an example
24
+ query = "Where was Marie Curie born?"
25
+ contexts = [
26
+ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.",
27
+ "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace."
28
+ ]
29
+ # Apply tokenizer
30
+ query_input = tokenizer(query, return_tensors='pt')
31
+ ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt')
32
+ # Compute embeddings: take the last-layer hidden state of the [CLS] token
33
+ query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :]
34
+ ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :]
35
+ # Compute similarity scores using dot product
36
+ score1 = query_emb @ ctx_emb[0] # 396.5625
37
+ score2 = query_emb @ ctx_emb[1] # 393.8340
38
+ ```
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "gradient_checkpointing": false,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.6.0.dev0",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 30522
23
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dce73ee03a6e99fc6442e789b2ace0b65057d509bfbc6042e71624692208266
3
+ size 437995569
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "do_lower_case": true
3
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff