add files
Browse files- README.md +122 -0
- config.json +46 -0
- preprocessor_config.json +11 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- pt
|
5 |
+
datasets:
|
6 |
+
- mustc
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- speech-translation
|
10 |
+
- automatic-speech-recognition
|
11 |
+
license: MIT
|
12 |
+
---
|
13 |
+
|
14 |
+
|
15 |
+
# S2T-SMALL-MUSTC-EN-PT-ST
|
16 |
+
|
17 |
+
`s2t-small-mustc-en-pt-st` is a Speech to Text Transformer (S2T) model trained for end-to-end Speech Translation (ST).
|
18 |
+
The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in
|
19 |
+
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text)
|
20 |
+
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
S2T is a transformer-based seq2seq (encoder-decoder) model designed for end-to-end Automatic Speech Recognition (ASR) and Speech
|
25 |
+
Translation (ST). It uses a convolutional downsampler to reduce the length of speech inputs by 3/4th before they are
|
26 |
+
fed into the encoder. The model is trained with standard autoregressive cross-entropy loss and generates the
|
27 |
+
transcripts/translations autoregressively.
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
This model can be used for end-to-end English speech to Portuguese text translation.
|
32 |
+
See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints.
|
33 |
+
|
34 |
+
|
35 |
+
### How to use
|
36 |
+
|
37 |
+
As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the
|
38 |
+
transcripts by passing the speech features to the model.
|
39 |
+
|
40 |
+
*Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the
|
41 |
+
filter bank features. Make sure to install the `torchaudio` package before running this example.*
|
42 |
+
|
43 |
+
You could either install those as extra speech dependancies with
|
44 |
+
`pip install transformers"[speech, sentencepiece]"` or install the packages seperatly
|
45 |
+
with `pip install torchaudio sentencepiece`.
|
46 |
+
|
47 |
+
|
48 |
+
```python
|
49 |
+
import torch
|
50 |
+
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
|
51 |
+
from datasets import load_dataset
|
52 |
+
import soundfile as sf
|
53 |
+
|
54 |
+
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-pt-st")
|
55 |
+
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-mustc-en-pt-st")
|
56 |
+
|
57 |
+
def map_to_array(batch):
|
58 |
+
speech, _ = sf.read(batch["file"])
|
59 |
+
batch["speech"] = speech
|
60 |
+
return batch
|
61 |
+
|
62 |
+
ds = load_dataset(
|
63 |
+
"patrickvonplaten/librispeech_asr_dummy",
|
64 |
+
"clean",
|
65 |
+
split="validation"
|
66 |
+
)
|
67 |
+
ds = ds.map(map_to_array)
|
68 |
+
|
69 |
+
inputs = processor(
|
70 |
+
ds["speech"][0],
|
71 |
+
sampling_rate=16_000,
|
72 |
+
return_tensors="pt"
|
73 |
+
)
|
74 |
+
generated_ids = model.generate(input_ids=inputs["input_features"], attention_mask=inputs["attention_mask"])
|
75 |
+
|
76 |
+
translation = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
77 |
+
```
|
78 |
+
|
79 |
+
|
80 |
+
## Training data
|
81 |
+
|
82 |
+
The s2t-small-mustc-en-pt-st is trained on English-Portuguese subset of [MuST-C](https://ict.fbk.eu/must-c/).
|
83 |
+
MuST-C is a multilingual speech translation corpus whose size and quality facilitates the training of end-to-end systems
|
84 |
+
for speech translation from English into several languages. For each target language, MuST-C comprises several hundred
|
85 |
+
hours of audio recordings from English TED Talks, which are automatically aligned at the sentence level with their manual
|
86 |
+
transcriptions and translations.
|
87 |
+
|
88 |
+
|
89 |
+
## Training procedure
|
90 |
+
|
91 |
+
### Preprocessing
|
92 |
+
|
93 |
+
The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from
|
94 |
+
WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization)
|
95 |
+
is applied to each example.
|
96 |
+
|
97 |
+
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 8,000.
|
98 |
+
|
99 |
+
|
100 |
+
### Training
|
101 |
+
|
102 |
+
The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779).
|
103 |
+
The encoder receives speech features, and the decoder generates the transcripts autoregressively. To accelerate
|
104 |
+
model training and for better performance the encoder is pre-trained for English ASR.
|
105 |
+
|
106 |
+
## Evaluation results
|
107 |
+
|
108 |
+
MuST-C test results for en-pt (BLEU score): 28.1
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
### BibTeX entry and citation info
|
113 |
+
|
114 |
+
```bibtex
|
115 |
+
@inproceedings{wang2020fairseqs2t,
|
116 |
+
title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
|
117 |
+
author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
|
118 |
+
booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
|
119 |
+
year = {2020},
|
120 |
+
}
|
121 |
+
|
122 |
+
```
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_dropout": 0.1,
|
3 |
+
"activation_function": "relu",
|
4 |
+
"architectures": [
|
5 |
+
"Speech2TextForConditionalGeneration"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"bos_token_id": 0,
|
9 |
+
"classifier_dropout": 0.0,
|
10 |
+
"conv_channels": 1024,
|
11 |
+
"conv_kernel_sizes": [
|
12 |
+
5,
|
13 |
+
5
|
14 |
+
],
|
15 |
+
"d_model": 256,
|
16 |
+
"decoder_attention_heads": 4,
|
17 |
+
"decoder_ffn_dim": 2048,
|
18 |
+
"decoder_layerdrop": 0.0,
|
19 |
+
"decoder_layers": 6,
|
20 |
+
"decoder_start_token_id": 2,
|
21 |
+
"dropout": 0.1,
|
22 |
+
"early_stopping": true,
|
23 |
+
"encoder_attention_heads": 4,
|
24 |
+
"encoder_ffn_dim": 2048,
|
25 |
+
"encoder_layerdrop": 0.0,
|
26 |
+
"encoder_layers": 12,
|
27 |
+
"eos_token_id": 2,
|
28 |
+
"gradient_checkpointing": false,
|
29 |
+
"init_std": 0.02,
|
30 |
+
"input_channels": 1,
|
31 |
+
"input_feat_per_channel": 80,
|
32 |
+
"is_encoder_decoder": true,
|
33 |
+
"max_length": 200,
|
34 |
+
"max_source_positions": 6000,
|
35 |
+
"max_target_positions": 1024,
|
36 |
+
"model_type": "speech_to_text",
|
37 |
+
"num_beams": 5,
|
38 |
+
"num_conv_layers": 2,
|
39 |
+
"num_hidden_layers": 12,
|
40 |
+
"pad_token_id": 1,
|
41 |
+
"scale_embedding": true,
|
42 |
+
"tie_word_embeddings": false,
|
43 |
+
"transformers_version": "4.4.0.dev0",
|
44 |
+
"use_cache": true,
|
45 |
+
"vocab_size": 8000
|
46 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_ceptral_normalize": true,
|
3 |
+
"feature_size": 80,
|
4 |
+
"normalize_means": true,
|
5 |
+
"normalize_vars": true,
|
6 |
+
"num_mel_bins": 80,
|
7 |
+
"padding_side": "right",
|
8 |
+
"padding_value": 0.0,
|
9 |
+
"return_attention_mask": true,
|
10 |
+
"sampling_rate": 16000
|
11 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01e1360ac8e0e87596282f6ff044ec4f21b3ab0aed15e6dc11f5d77e9b2def5b
|
3 |
+
size 124411397
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:273617e662592278cf55d13fad532329daf3c1b5a3db00bba35eea6b66c401ab
|
3 |
+
size 383473
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "do_upper_case": false, "do_lower_case": false, "tgt_lang": null, "lang_codes": null}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|