File size: 5,378 Bytes
b579854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.


import torch
import torch.nn as nn


class ModLN(nn.Module):
    """
    Modulation with adaLN.
    
    References:
    DiT: https://github.com/facebookresearch/DiT/blob/main/models.py#L101
    """
    def __init__(self, inner_dim: int, mod_dim: int, eps: float):
        super().__init__()
        self.norm = nn.LayerNorm(inner_dim, eps=eps)
        self.mlp = nn.Sequential(
            nn.SiLU(),
            nn.Linear(mod_dim, inner_dim * 2),
        )

    @staticmethod
    def modulate(x, shift, scale):
        # x: [N, L, D]
        # shift, scale: [N, D]
        return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)

    def forward(self, x, cond):
        shift, scale = self.mlp(cond).chunk(2, dim=-1)  # [N, D]
        return self.modulate(self.norm(x), shift, scale)  # [N, L, D]


class ConditionModulationBlock(nn.Module):
    """
    Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks.
    """
    # use attention from torch.nn.MultiHeadAttention
    # Block contains a cross-attention layer, a self-attention layer, and a MLP
    def __init__(self, inner_dim: int, cond_dim: int, mod_dim: int, num_heads: int, eps: float,
                 attn_drop: float = 0., attn_bias: bool = False,
                 mlp_ratio: float = 4., mlp_drop: float = 0.):
        super().__init__()
        self.norm1 = ModLN(inner_dim, mod_dim, eps)
        self.cross_attn = nn.MultiheadAttention(
            embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim,
            dropout=attn_drop, bias=attn_bias, batch_first=True)
        self.norm2 = ModLN(inner_dim, mod_dim, eps)
        self.self_attn = nn.MultiheadAttention(
            embed_dim=inner_dim, num_heads=num_heads,
            dropout=attn_drop, bias=attn_bias, batch_first=True)
        self.norm3 = ModLN(inner_dim, mod_dim, eps)
        self.mlp = nn.Sequential(
            nn.Linear(inner_dim, int(inner_dim * mlp_ratio)),
            nn.GELU(),
            nn.Dropout(mlp_drop),
            nn.Linear(int(inner_dim * mlp_ratio), inner_dim),
            nn.Dropout(mlp_drop),
        )

    def forward(self, x, cond, mod):
        # x: [N, L, D]
        # cond: [N, L_cond, D_cond]
        # mod: [N, D_mod]
        x = x + self.cross_attn(self.norm1(x, mod), cond, cond, need_weights=False)[0]
        before_sa = self.norm2(x, mod)
        x = x + self.self_attn(before_sa, before_sa, before_sa, need_weights=False)[0]
        x = x + self.mlp(self.norm3(x, mod))
        return x


class TriplaneTransformer(nn.Module):
    """
    Transformer with condition and modulation that generates a triplane representation.
    
    Reference:
    Timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L486
    """
    def __init__(self, inner_dim: int, image_feat_dim: int, camera_embed_dim: int,
                 triplane_low_res: int, triplane_high_res: int, triplane_dim: int,
                 num_layers: int, num_heads: int,
                 eps: float = 1e-6):
        super().__init__()

        # attributes
        self.triplane_low_res = triplane_low_res
        self.triplane_high_res = triplane_high_res
        self.triplane_dim = triplane_dim

        # modules
        # initialize pos_embed with 1/sqrt(dim) * N(0, 1)
        self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, inner_dim) * (1. / inner_dim) ** 0.5)
        self.layers = nn.ModuleList([
            ConditionModulationBlock(
                inner_dim=inner_dim, cond_dim=image_feat_dim, mod_dim=camera_embed_dim, num_heads=num_heads, eps=eps)
            for _ in range(num_layers)
        ])
        self.norm = nn.LayerNorm(inner_dim, eps=eps)
        self.deconv = nn.ConvTranspose2d(inner_dim, triplane_dim, kernel_size=2, stride=2, padding=0)

    def forward(self, image_feats, camera_embeddings):
        # image_feats: [N, L_cond, D_cond]
        # camera_embeddings: [N, D_mod]

        assert image_feats.shape[0] == camera_embeddings.shape[0], \
            f"Mismatched batch size: {image_feats.shape[0]} vs {camera_embeddings.shape[0]}"

        N = image_feats.shape[0]
        H = W = self.triplane_low_res
        L = 3 * H * W

        x = self.pos_embed.repeat(N, 1, 1)  # [N, L, D]
        for layer in self.layers:
            x = layer(x, image_feats, camera_embeddings)
        x = self.norm(x)

        # separate each plane and apply deconv
        x = x.view(N, 3, H, W, -1)
        x = torch.einsum('nihwd->indhw', x)  # [3, N, D, H, W]
        x = x.contiguous().view(3*N, -1, H, W)  # [3*N, D, H, W]
        x = self.deconv(x)  # [3*N, D', H', W']
        x = x.view(3, N, *x.shape[-3:])  # [3, N, D', H', W']
        x = torch.einsum('indhw->nidhw', x)  # [N, 3, D', H', W']
        x = x.contiguous()

        assert self.triplane_high_res == x.shape[-2], \
            f"Output triplane resolution does not match with expected: {x.shape[-2]} vs {self.triplane_high_res}"
        assert self.triplane_dim == x.shape[-3], \
            f"Output triplane dimension does not match with expected: {x.shape[-3]} vs {self.triplane_dim}"

        return x