|
|
|
|
|
import torch.nn as nn |
|
from transformers import PreTrainedModel, PretrainedConfig |
|
import torch |
|
import numpy as np |
|
import math |
|
|
|
from .dino_wrapper2 import DinoWrapper |
|
from .transformer import TriplaneTransformer |
|
from .synthesizer_part import TriplaneSynthesizer |
|
|
|
class CameraEmbedder(nn.Module): |
|
def __init__(self, raw_dim: int, embed_dim: int): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(raw_dim, embed_dim), |
|
nn.SiLU(), |
|
nn.Linear(embed_dim, embed_dim), |
|
) |
|
|
|
def forward(self, x): |
|
return self.mlp(x) |
|
|
|
class LRMGeneratorConfig(PretrainedConfig): |
|
model_type = "lrm_generator" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.camera_embed_dim = kwargs.get("camera_embed_dim", 1024) |
|
self.rendering_samples_per_ray = kwargs.get("rendering_samples_per_ray", 128) |
|
self.transformer_dim = kwargs.get("transformer_dim", 1024) |
|
self.transformer_layers = kwargs.get("transformer_layers", 16) |
|
self.transformer_heads = kwargs.get("transformer_heads", 16) |
|
self.triplane_low_res = kwargs.get("triplane_low_res", 32) |
|
self.triplane_high_res = kwargs.get("triplane_high_res", 64) |
|
self.triplane_dim = kwargs.get("triplane_dim", 80) |
|
self.encoder_freeze = kwargs.get("encoder_freeze", False) |
|
self.encoder_model_name = kwargs.get("encoder_model_name", 'facebook/dinov2-base') |
|
self.encoder_feat_dim = kwargs.get("encoder_feat_dim", 768) |
|
|
|
|
|
|
|
class LRMGenerator(PreTrainedModel): |
|
config_class = LRMGeneratorConfig |
|
|
|
def __init__(self, config: LRMGeneratorConfig): |
|
super().__init__(config) |
|
|
|
self.encoder_feat_dim = config.encoder_feat_dim |
|
self.camera_embed_dim = config.camera_embed_dim |
|
|
|
self.encoder = DinoWrapper( |
|
model_name=config.encoder_model_name, |
|
freeze=config.encoder_freeze, |
|
) |
|
self.camera_embedder = CameraEmbedder( |
|
raw_dim=12 + 4, embed_dim=config.camera_embed_dim, |
|
) |
|
self.transformer = TriplaneTransformer( |
|
inner_dim=config.transformer_dim, num_layers=config.transformer_layers, num_heads=config.transformer_heads, |
|
image_feat_dim=config.encoder_feat_dim, |
|
camera_embed_dim=config.camera_embed_dim, |
|
triplane_low_res=config.triplane_low_res, triplane_high_res=config.triplane_high_res, triplane_dim=config.triplane_dim, |
|
) |
|
self.synthesizer = TriplaneSynthesizer( |
|
triplane_dim=config.triplane_dim, samples_per_ray=config.rendering_samples_per_ray, |
|
) |
|
|
|
def forward(self, image, camera, export_mesh=False, mesh_size=512, render_size=384, export_video=False, fps=30): |
|
|
|
assert image.shape[0] == camera.shape[0], "Batch size mismatch" |
|
N = image.shape[0] |
|
|
|
|
|
image_feats = self.encoder(image) |
|
assert image_feats.shape[-1] == self.encoder_feat_dim, \ |
|
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}" |
|
|
|
|
|
camera_embeddings = self.camera_embedder(camera) |
|
assert camera_embeddings.shape[-1] == self.camera_embed_dim, \ |
|
f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}" |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
planes = self.transformer(image_feats, camera_embeddings) |
|
assert planes.shape[0] == N, "Batch size mismatch for planes" |
|
assert planes.shape[1] == 3, "Planes should have 3 channels" |
|
|
|
|
|
if export_mesh: |
|
import mcubes |
|
import trimesh |
|
grid_out = self.synthesizer.forward_grid(planes=planes, grid_size=mesh_size) |
|
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0) |
|
vtx = vtx / (mesh_size - 1) * 2 - 1 |
|
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=image.device).unsqueeze(0) |
|
vtx_colors = self.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() |
|
vtx_colors = (vtx_colors * 255).astype(np.uint8) |
|
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors) |
|
|
|
mesh_path = "awesome_mesh.obj" |
|
mesh.export(mesh_path, 'obj') |
|
|
|
return planes, mesh_path |
|
|
|
|
|
if export_video: |
|
render_cameras = self._default_render_cameras(batch_size=N).to(image.device) |
|
|
|
frames = [] |
|
chunk_size = 1 |
|
for i in range(0, render_cameras.shape[1], chunk_size): |
|
frame_chunk = self.synthesizer( |
|
planes, |
|
render_cameras[:, i:i + chunk_size], |
|
render_size, |
|
render_size, |
|
0, |
|
0 |
|
) |
|
frames.append(frame_chunk['images_rgb']) |
|
|
|
frames = torch.cat(frames, dim=1) |
|
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8) |
|
|
|
|
|
video_path = "awesome_video.mp4" |
|
imageio.mimwrite(video_path, frames, fps=fps) |
|
|
|
return planes, video_path |
|
|
|
return planes |
|
|
|
|
|
|
|
def _default_intrinsics(self): |
|
fx = fy = 384 |
|
cx = cy = 256 |
|
w = h = 512 |
|
intrinsics = torch.tensor([ |
|
[fx, fy], |
|
[cx, cy], |
|
[w, h], |
|
], dtype=torch.float32) |
|
return intrinsics |
|
|
|
def _default_render_cameras(self, batch_size=1): |
|
M = 160 |
|
radius = 1.5 |
|
elevation = 0 |
|
|
|
camera_positions = [] |
|
rand_theta = np.random.uniform(0, np.pi / 180) |
|
elevation = math.radians(elevation) |
|
for i in range(M): |
|
theta = 2 * math.pi * i / M + rand_theta |
|
x = radius * math.cos(theta) * math.cos(elevation) |
|
y = radius * math.sin(theta) * math.cos(elevation) |
|
z = radius * math.sin(elevation) |
|
camera_positions.append([x, y, z]) |
|
|
|
camera_positions = torch.tensor(camera_positions, dtype=torch.float32) |
|
extrinsics = self.center_looking_at_camera_pose(camera_positions) |
|
|
|
intrinsics = self._default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1) |
|
render_cameras = self.build_camera_standard(extrinsics, intrinsics) |
|
|
|
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1) |
|
|
|
def center_looking_at_camera_pose(self, camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None): |
|
if look_at is None: |
|
look_at = torch.tensor([0, 0, 0], dtype=torch.float32) |
|
if up_world is None: |
|
up_world = torch.tensor([0, 0, 1], dtype=torch.float32) |
|
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1) |
|
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1) |
|
|
|
z_axis = camera_position - look_at |
|
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True) |
|
x_axis = torch.cross(up_world, z_axis) |
|
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True) |
|
y_axis = torch.cross(z_axis, x_axis) |
|
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True) |
|
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1) |
|
return extrinsics |
|
|
|
def get_normalized_camera_intrinsics(self, intrinsics: torch.Tensor): |
|
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1] |
|
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1] |
|
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1] |
|
fx, fy = fx / width, fy / height |
|
cx, cy = cx / width, cy / height |
|
return fx, fy, cx, cy |
|
|
|
def build_camera_standard(self, RT: torch.Tensor, intrinsics: torch.Tensor): |
|
E = self.compose_extrinsic_RT(RT) |
|
fx, fy, cx, cy = self.get_normalized_camera_intrinsics(intrinsics) |
|
I = torch.stack([ |
|
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1), |
|
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1), |
|
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1), |
|
], dim=1) |
|
return torch.cat([ |
|
E.reshape(-1, 16), |
|
I.reshape(-1, 9), |
|
], dim=-1) |
|
|
|
def compose_extrinsic_RT(self, RT: torch.Tensor): |
|
return torch.cat([ |
|
RT, |
|
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device) |
|
], dim=1) |
|
|