vfusion3d / modeling.py
JunlinHan's picture
Upload 61 files
b579854 verified
#### modeling.py
import torch.nn as nn
from transformers import PreTrainedModel, PretrainedConfig
import torch
import numpy as np
import math
from .dino_wrapper2 import DinoWrapper
from .transformer import TriplaneTransformer
from .synthesizer_part import TriplaneSynthesizer
class CameraEmbedder(nn.Module):
def __init__(self, raw_dim: int, embed_dim: int):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(raw_dim, embed_dim),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim),
)
def forward(self, x):
return self.mlp(x)
class LRMGeneratorConfig(PretrainedConfig):
model_type = "lrm_generator"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.camera_embed_dim = kwargs.get("camera_embed_dim", 1024)
self.rendering_samples_per_ray = kwargs.get("rendering_samples_per_ray", 128)
self.transformer_dim = kwargs.get("transformer_dim", 1024)
self.transformer_layers = kwargs.get("transformer_layers", 16)
self.transformer_heads = kwargs.get("transformer_heads", 16)
self.triplane_low_res = kwargs.get("triplane_low_res", 32)
self.triplane_high_res = kwargs.get("triplane_high_res", 64)
self.triplane_dim = kwargs.get("triplane_dim", 80)
self.encoder_freeze = kwargs.get("encoder_freeze", False)
self.encoder_model_name = kwargs.get("encoder_model_name", 'facebook/dinov2-base')
self.encoder_feat_dim = kwargs.get("encoder_feat_dim", 768)
class LRMGenerator(PreTrainedModel):
config_class = LRMGeneratorConfig
def __init__(self, config: LRMGeneratorConfig):
super().__init__(config)
self.encoder_feat_dim = config.encoder_feat_dim
self.camera_embed_dim = config.camera_embed_dim
self.encoder = DinoWrapper(
model_name=config.encoder_model_name,
freeze=config.encoder_freeze,
)
self.camera_embedder = CameraEmbedder(
raw_dim=12 + 4, embed_dim=config.camera_embed_dim,
)
self.transformer = TriplaneTransformer(
inner_dim=config.transformer_dim, num_layers=config.transformer_layers, num_heads=config.transformer_heads,
image_feat_dim=config.encoder_feat_dim,
camera_embed_dim=config.camera_embed_dim,
triplane_low_res=config.triplane_low_res, triplane_high_res=config.triplane_high_res, triplane_dim=config.triplane_dim,
)
self.synthesizer = TriplaneSynthesizer(
triplane_dim=config.triplane_dim, samples_per_ray=config.rendering_samples_per_ray,
)
def forward(self, image, camera, export_mesh=False, mesh_size=512, render_size=384, export_video=False, fps=30):
assert image.shape[0] == camera.shape[0], "Batch size mismatch"
N = image.shape[0]
# encode image
image_feats = self.encoder(image)
assert image_feats.shape[-1] == self.encoder_feat_dim, \
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}"
# embed camera
camera_embeddings = self.camera_embedder(camera)
assert camera_embeddings.shape[-1] == self.camera_embed_dim, \
f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}"
with torch.no_grad():
# transformer generating planes
planes = self.transformer(image_feats, camera_embeddings)
assert planes.shape[0] == N, "Batch size mismatch for planes"
assert planes.shape[1] == 3, "Planes should have 3 channels"
# Generate the mesh
if export_mesh:
import mcubes
import trimesh
grid_out = self.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=image.device).unsqueeze(0)
vtx_colors = self.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
mesh_path = "awesome_mesh.obj"
mesh.export(mesh_path, 'obj')
return planes, mesh_path
# Generate video
if export_video:
render_cameras = self._default_render_cameras(batch_size=N).to(image.device)
frames = []
chunk_size = 1 # Adjust chunk size as needed
for i in range(0, render_cameras.shape[1], chunk_size):
frame_chunk = self.synthesizer(
planes,
render_cameras[:, i:i + chunk_size],
render_size,
render_size,
0,
0
)
frames.append(frame_chunk['images_rgb'])
frames = torch.cat(frames, dim=1)
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
# Save video
video_path = "awesome_video.mp4"
imageio.mimwrite(video_path, frames, fps=fps)
return planes, video_path
return planes
# Copied from https://github.com/facebookresearch/vfusion3d/blob/main/lrm/cam_utils.py
# and https://github.com/facebookresearch/vfusion3d/blob/main/lrm/inferrer.py
def _default_intrinsics(self):
fx = fy = 384
cx = cy = 256
w = h = 512
intrinsics = torch.tensor([
[fx, fy],
[cx, cy],
[w, h],
], dtype=torch.float32)
return intrinsics
def _default_render_cameras(self, batch_size=1):
M = 160 # Number of views
radius = 1.5
elevation = 0
camera_positions = []
rand_theta = np.random.uniform(0, np.pi / 180)
elevation = math.radians(elevation)
for i in range(M):
theta = 2 * math.pi * i / M + rand_theta
x = radius * math.cos(theta) * math.cos(elevation)
y = radius * math.sin(theta) * math.cos(elevation)
z = radius * math.sin(elevation)
camera_positions.append([x, y, z])
camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
extrinsics = self.center_looking_at_camera_pose(camera_positions)
intrinsics = self._default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
render_cameras = self.build_camera_standard(extrinsics, intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
def center_looking_at_camera_pose(self, camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
if look_at is None:
look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
if up_world is None:
up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)
z_axis = camera_position - look_at
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
x_axis = torch.cross(up_world, z_axis)
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
y_axis = torch.cross(z_axis, x_axis)
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
return extrinsics
def get_normalized_camera_intrinsics(self, intrinsics: torch.Tensor):
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
fx, fy = fx / width, fy / height
cx, cy = cx / width, cy / height
return fx, fy, cx, cy
def build_camera_standard(self, RT: torch.Tensor, intrinsics: torch.Tensor):
E = self.compose_extrinsic_RT(RT)
fx, fy, cx, cy = self.get_normalized_camera_intrinsics(intrinsics)
I = torch.stack([
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
], dim=1)
return torch.cat([
E.reshape(-1, 16),
I.reshape(-1, 9),
], dim=-1)
def compose_extrinsic_RT(self, RT: torch.Tensor):
return torch.cat([
RT,
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
], dim=1)