File size: 2,709 Bytes
8ec7b71 2699424 8ec7b71 df30c51 8ec7b71 0d0f9d2 6f0e5e6 8ec7b71 6f0e5e6 df30c51 886284d 1ca71a9 886284d 82bf9d4 3bb88c9 df30c51 8ec7b71 df30c51 8ec7b71 6f0e5e6 8ec7b71 6f0e5e6 8ec7b71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: cc-by-nc-4.0
library_name: fairseq
task: audio-to-audio
tags:
- fairseq
- audio
- audio-to-audio
- speech-to-speech-translation
datasets:
- MuST-C
---
## xm_transformer_unity_en-hk
Speech-to-speech translation model with two-pass decoder (UnitY) from fairseq:
- English-Hokkien
- Trained with supervised data in TED domain, and weakly supervised data in TED and Audiobook domain. See [here]( https://research.facebook.com/publications/hokkien-direct-speech-to-speech-translation)
for training details.
- Speech synthesis with [facebook/unit_hifigan_HK_layer12.km2500_frame_TAT-TTS](https://huggingface.co/facebook/unit_hifigan_HK_layer12.km2500_frame_TAT-TTS)
- [Project Page](https://github.com/facebookresearch/fairseq/tree/ust/examples/hokkien)
## Usage
```python
import json
import os
from pathlib import Path
import IPython.display as ipd
from fairseq import hub_utils
from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
from fairseq.models.speech_to_text.hub_interface import S2THubInterface
from fairseq.models.text_to_speech import CodeHiFiGANVocoder
from fairseq.models.text_to_speech.hub_interface import VocoderHubInterface
from huggingface_hub import snapshot_download
import torchaudio
cache_dir = os.getenv("HUGGINGFACE_HUB_CACHE")
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
"facebook/xm_transformer_unity_en-hk",
arg_overrides={"config_yaml": "config.yaml", "task": "speech_to_text"},
cache_dir=cache_dir,
)
#model = models[0].cpu()
#cfg["task"].cpu = True
generator = task.build_generator([model], cfg)
# requires 16000Hz mono channel audio
audio, _ = torchaudio.load("/path/to/an/audio/file")
sample = S2THubInterface.get_model_input(task, audio)
unit = S2THubInterface.get_prediction(task, model, generator, sample)
# speech synthesis
library_name = "fairseq"
cache_dir = (
cache_dir or (Path.home() / ".cache" / library_name).as_posix()
)
cache_dir = snapshot_download(
f"facebook/unit_hifigan_HK_layer12.km2500_frame_TAT-TTS", cache_dir=cache_dir, library_name=library_name
)
x = hub_utils.from_pretrained(
cache_dir,
"model.pt",
".",
archive_map=CodeHiFiGANVocoder.hub_models(),
config_yaml="config.json",
fp16=False,
is_vocoder=True,
)
with open(f"{x['args']['data']}/config.json") as f:
vocoder_cfg = json.load(f)
assert (
len(x["args"]["model_path"]) == 1
), "Too many vocoder models in the input"
vocoder = CodeHiFiGANVocoder(x["args"]["model_path"][0], vocoder_cfg)
tts_model = VocoderHubInterface(vocoder_cfg, vocoder)
tts_sample = tts_model.get_model_input(unit)
wav, sr = tts_model.get_prediction(tts_sample)
ipd.Audio(wav, rate=sr)
```
|