faridlazuarda
commited on
Initial commit of latest checkpoint files
Browse files- README.md +202 -0
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +225 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: CohereForAI/aya-101
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.10.0
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "CohereForAI/aya-101",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.01,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 4,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"v",
|
24 |
+
"q"
|
25 |
+
],
|
26 |
+
"task_type": "SEQ_CLS",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:515629406aeede40371d72005153b676ca4a8c1fd953c9bf6f41690738a8dc23
|
3 |
+
size 18918496
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c7fe14598b6ac7b2b19e64311fcf2730d4f0eb5c5a2f9db109cb1907852996e
|
3 |
+
size 37990394
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91ab3bca667cf29f3ea7c5e9867acbb2b3f66632e8425745ffc0e157fb4ac21a
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3639a21adec6316397ddf46df39adb14bf2c1acdddc7615711b1520a3e25eb1e
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.47813913226127625,
|
3 |
+
"best_model_checkpoint": "/mnt/beegfs/farid/mlora/outputs/xnli/aya-101/ar/rank4_lr5e-5/checkpoint-6000",
|
4 |
+
"epoch": 0.24445893089960888,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 6000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.020371577574967405,
|
13 |
+
"grad_norm": 3.1687538623809814,
|
14 |
+
"learning_rate": 4.166666666666667e-05,
|
15 |
+
"loss": 1.1228,
|
16 |
+
"step": 500
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.020371577574967405,
|
20 |
+
"eval_accuracy": 0.4465863453815261,
|
21 |
+
"eval_f1": 0.4398462893270641,
|
22 |
+
"eval_loss": 1.0515310764312744,
|
23 |
+
"eval_runtime": 413.6686,
|
24 |
+
"eval_samples_per_second": 6.019,
|
25 |
+
"eval_steps_per_second": 0.377,
|
26 |
+
"step": 500
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.04074315514993481,
|
30 |
+
"grad_norm": 10.303964614868164,
|
31 |
+
"learning_rate": 4.62962962962963e-05,
|
32 |
+
"loss": 0.901,
|
33 |
+
"step": 1000
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.04074315514993481,
|
37 |
+
"eval_accuracy": 0.7469879518072289,
|
38 |
+
"eval_f1": 0.7498668828149658,
|
39 |
+
"eval_loss": 0.6499696969985962,
|
40 |
+
"eval_runtime": 411.8975,
|
41 |
+
"eval_samples_per_second": 6.045,
|
42 |
+
"eval_steps_per_second": 0.379,
|
43 |
+
"step": 1000
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"epoch": 0.06111473272490222,
|
47 |
+
"grad_norm": 27.607500076293945,
|
48 |
+
"learning_rate": 4.166666666666667e-05,
|
49 |
+
"loss": 0.6865,
|
50 |
+
"step": 1500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.06111473272490222,
|
54 |
+
"eval_accuracy": 0.7763052208835342,
|
55 |
+
"eval_f1": 0.7760746295957563,
|
56 |
+
"eval_loss": 0.6157358884811401,
|
57 |
+
"eval_runtime": 411.7973,
|
58 |
+
"eval_samples_per_second": 6.047,
|
59 |
+
"eval_steps_per_second": 0.379,
|
60 |
+
"step": 1500
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"epoch": 0.08148631029986962,
|
64 |
+
"grad_norm": 10.66073989868164,
|
65 |
+
"learning_rate": 3.7037037037037037e-05,
|
66 |
+
"loss": 0.6189,
|
67 |
+
"step": 2000
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"epoch": 0.08148631029986962,
|
71 |
+
"eval_accuracy": 0.7799196787148595,
|
72 |
+
"eval_f1": 0.7829493062150646,
|
73 |
+
"eval_loss": 0.5638271570205688,
|
74 |
+
"eval_runtime": 411.2214,
|
75 |
+
"eval_samples_per_second": 6.055,
|
76 |
+
"eval_steps_per_second": 0.379,
|
77 |
+
"step": 2000
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 0.10185788787483703,
|
81 |
+
"grad_norm": 4.5490522384643555,
|
82 |
+
"learning_rate": 3.240740740740741e-05,
|
83 |
+
"loss": 0.621,
|
84 |
+
"step": 2500
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.10185788787483703,
|
88 |
+
"eval_accuracy": 0.8012048192771084,
|
89 |
+
"eval_f1": 0.8020131355543914,
|
90 |
+
"eval_loss": 0.5373384952545166,
|
91 |
+
"eval_runtime": 411.4783,
|
92 |
+
"eval_samples_per_second": 6.051,
|
93 |
+
"eval_steps_per_second": 0.379,
|
94 |
+
"step": 2500
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.12222946544980444,
|
98 |
+
"grad_norm": 9.11120319366455,
|
99 |
+
"learning_rate": 2.777777777777778e-05,
|
100 |
+
"loss": 0.5901,
|
101 |
+
"step": 3000
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.12222946544980444,
|
105 |
+
"eval_accuracy": 0.8132530120481928,
|
106 |
+
"eval_f1": 0.813184387788095,
|
107 |
+
"eval_loss": 0.5145502090454102,
|
108 |
+
"eval_runtime": 411.6491,
|
109 |
+
"eval_samples_per_second": 6.049,
|
110 |
+
"eval_steps_per_second": 0.379,
|
111 |
+
"step": 3000
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.14260104302477183,
|
115 |
+
"grad_norm": 7.9284515380859375,
|
116 |
+
"learning_rate": 2.314814814814815e-05,
|
117 |
+
"loss": 0.5831,
|
118 |
+
"step": 3500
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.14260104302477183,
|
122 |
+
"eval_accuracy": 0.8068273092369478,
|
123 |
+
"eval_f1": 0.807843707897922,
|
124 |
+
"eval_loss": 0.5040690302848816,
|
125 |
+
"eval_runtime": 411.4454,
|
126 |
+
"eval_samples_per_second": 6.052,
|
127 |
+
"eval_steps_per_second": 0.379,
|
128 |
+
"step": 3500
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.16297262059973924,
|
132 |
+
"grad_norm": 5.931895732879639,
|
133 |
+
"learning_rate": 1.8518518518518518e-05,
|
134 |
+
"loss": 0.5816,
|
135 |
+
"step": 4000
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.16297262059973924,
|
139 |
+
"eval_accuracy": 0.8164658634538152,
|
140 |
+
"eval_f1": 0.8168966682189732,
|
141 |
+
"eval_loss": 0.49493011832237244,
|
142 |
+
"eval_runtime": 411.9765,
|
143 |
+
"eval_samples_per_second": 6.044,
|
144 |
+
"eval_steps_per_second": 0.379,
|
145 |
+
"step": 4000
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.18334419817470665,
|
149 |
+
"grad_norm": 5.388001918792725,
|
150 |
+
"learning_rate": 1.388888888888889e-05,
|
151 |
+
"loss": 0.5606,
|
152 |
+
"step": 4500
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.18334419817470665,
|
156 |
+
"eval_accuracy": 0.8220883534136546,
|
157 |
+
"eval_f1": 0.8223408197075474,
|
158 |
+
"eval_loss": 0.48176905512809753,
|
159 |
+
"eval_runtime": 411.5334,
|
160 |
+
"eval_samples_per_second": 6.051,
|
161 |
+
"eval_steps_per_second": 0.379,
|
162 |
+
"step": 4500
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 0.20371577574967406,
|
166 |
+
"grad_norm": 8.442779541015625,
|
167 |
+
"learning_rate": 9.259259259259259e-06,
|
168 |
+
"loss": 0.5742,
|
169 |
+
"step": 5000
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.20371577574967406,
|
173 |
+
"eval_accuracy": 0.8152610441767069,
|
174 |
+
"eval_f1": 0.8151921057938069,
|
175 |
+
"eval_loss": 0.49218347668647766,
|
176 |
+
"eval_runtime": 411.5662,
|
177 |
+
"eval_samples_per_second": 6.05,
|
178 |
+
"eval_steps_per_second": 0.379,
|
179 |
+
"step": 5000
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.22408735332464147,
|
183 |
+
"grad_norm": 4.897560119628906,
|
184 |
+
"learning_rate": 4.6296296296296296e-06,
|
185 |
+
"loss": 0.5648,
|
186 |
+
"step": 5500
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.22408735332464147,
|
190 |
+
"eval_accuracy": 0.8236947791164658,
|
191 |
+
"eval_f1": 0.823621391191149,
|
192 |
+
"eval_loss": 0.47885623574256897,
|
193 |
+
"eval_runtime": 431.6447,
|
194 |
+
"eval_samples_per_second": 5.769,
|
195 |
+
"eval_steps_per_second": 0.361,
|
196 |
+
"step": 5500
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.24445893089960888,
|
200 |
+
"grad_norm": 6.240907669067383,
|
201 |
+
"learning_rate": 0.0,
|
202 |
+
"loss": 0.5461,
|
203 |
+
"step": 6000
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 0.24445893089960888,
|
207 |
+
"eval_accuracy": 0.8253012048192772,
|
208 |
+
"eval_f1": 0.8254650982786048,
|
209 |
+
"eval_loss": 0.47813913226127625,
|
210 |
+
"eval_runtime": 412.3144,
|
211 |
+
"eval_samples_per_second": 6.039,
|
212 |
+
"eval_steps_per_second": 0.378,
|
213 |
+
"step": 6000
|
214 |
+
}
|
215 |
+
],
|
216 |
+
"logging_steps": 500,
|
217 |
+
"max_steps": 6000,
|
218 |
+
"num_input_tokens_seen": 0,
|
219 |
+
"num_train_epochs": 1,
|
220 |
+
"save_steps": 500,
|
221 |
+
"total_flos": 8.03166870528e+17,
|
222 |
+
"train_batch_size": 16,
|
223 |
+
"trial_name": null,
|
224 |
+
"trial_params": null
|
225 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2a7f763ab943fc5e6165dae18ac84bcf24a42777ef97fe318e69ab7a6fbfe22
|
3 |
+
size 5048
|