--- base_model: HuggingFaceTB/SmolLM-1.7B datasets: - generator library_name: peft license: apache-2.0 tags: - trl - sft - generated_from_trainer model-index: - name: SmolLM-1.7B-Instruct-Finetune-LoRA results: [] --- # SmolLM-1.7B-Instruct-Finetune-LoRA This model is a fine-tuned version of [HuggingFaceTB/SmolLM-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.9799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2503 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6526 | 0.6173 | 25 | 1.5373 | | 1.3791 | 1.2346 | 50 | 1.1969 | | 1.1244 | 1.8519 | 75 | 1.0547 | | 1.0282 | 2.4691 | 100 | 1.0055 | | 1.0063 | 3.0864 | 125 | 0.9852 | | 0.9864 | 3.7037 | 150 | 0.9799 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1