--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer - hf-asr-leaderboard - automatic-speech-recognition - greek datasets: - mozilla-foundation/common_voice_11_0 - google/fleurs metrics: - wer model-index: - name: whisper-md-el-intlv-xs results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: el split: test metrics: - name: Wer type: wer value: 11.3670 --- # whisper-md-el-intlv-xs This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on interleaved mozilla-foundation/common_voice_11_0 (el) and the google/fleurs (el_gr) datasets. It achieves the following results on the mozilla-foundation/common_voice_11_0 test evaluation set: - Loss: 0.4168 - Wer: 11.3670 ## Model description This model is trained over the two interleaved datasets in the Greek language. Testing used only the common_voice_11_0 (el) test split. ## Intended uses & limitations The model was trained for transcription in Greek ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0251 | 2.49 | 1000 | 0.2216 | 12.5836 | | 0.0051 | 4.98 | 2000 | 0.2874 | 12.2957 | | 0.0015 | 7.46 | 3000 | 0.3281 | 11.9056 | | 0.0017 | 9.95 | 4000 | 0.3178 | 12.5929 | | 0.0008 | 12.44 | 5000 | 0.3449 | 11.9799 | | 0.0001 | 14.93 | 6000 | 0.3638 | 11.7106 | | 0.0001 | 17.41 | 7000 | 0.3910 | 11.4970 | | 0.0 | 19.9 | 8000 | 0.4042 | 11.3949 | | 0.0 | 22.39 | 9000 | 0.4129 | 11.4134 | | 0.0 | 24.88 | 10000 | 0.4168 | 11.3670 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2