--- language: - el license: apache-2.0 tags: - whisper-event datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-small-el results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 el type: mozilla-foundation/common_voice_11_0 config: el split: test args: el metrics: - name: Wer type: wer value: 25.696508172362552 --- # Whisper Small - Greek (el) This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 el dataset for transcription in Greek. It achieves the following results on the evaluation set: - train_loss: 0.0615 - Wer: 20.2080 ### Training results Upon completion of training the best model was reloaded and tested with the following results extracted from the stdout log: ``` Loading best model from ./whisper-small-el/checkpoint-5000 (score: 20.208023774145616). {'train_runtime': 73232.697, 'train_samples_per_second': 4.37, 'train_steps_per_second': 0.068, 'train_loss': 0.06146362095708027, 'epoch': 94.34} TrainOutput(global_step=5000, training_loss=0.06146362095708027, metrics={'train_runtime': 73232.697, 'train_samples_per_second': 4.37, 'train_steps_per_second': 0.068, 'train_loss': 0.06146362095708027, 'epoch': 94.34}) ``` ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0 - Datasets 2.7.1.dev0 - Tokenizers 0.12.1