--- language: - en - fr tags: - pytorch - causal-lm - mistral - autoround - auto-round - intel-autoround - gptq - woq - intel - pytorch - mistralai license: apache-2.0 model_name: Mistral 7B v0.3 base_model: - mistralai/Mistral-7B-v0.3 inference: false model_creator: mistralai pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Asymmetrical Quantization - Method WoQ (AutoRound format) Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.3 Note: this INT4 version of Mistral-7B-v0.3 has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz tar -xvzf v0.4.3.tar.gz cd auto-round-0.4.3 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "mistralai/Mistral-7B-v0.3" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/mistralai_Mistral-7B-v0.3-autoround-int4-gs128-asym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/) ## Disclaimer This quantized model comes with no warranty. It has been developed only for research purposes.