--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" metrics: - f1 - precision - recall - accuracy model-index: - name: tielectra-small-sentiment results: - task: name: Text Classification type: text-classification metrics: - name: F1 type: f1 value: 0.8228962818003914 - name: Precision type: precision value: 0.8055555555555556 - name: Recall type: recall value: 0.841 - name: Accuracy type: accuracy value: 0.819 --- # Sentiment Analysis for Tigrinya with TiELECTRA This model is a fine-tuned version of [TiELECTRA](https://huggingface.co/fgaim/tielectra-small) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ```python from transformers import pipeline ti_sent = pipeline("sentiment-analysis", model="fgaim/tielectra-small-sentiment") ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results The model achieves the following results on the evaluation set: - F1: 0.8229 - Precision: 0.8056 - Recall: 0.841 - Accuracy: 0.819 - Loss: 0.4299 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author= {Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title= {Monolingual Pre-trained Language Models for Tigrinya}, year= 2021, publisher= {WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tela, A., Woubie, A. and Hautamäki, V. 2020. Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya. ArXiv, abs/2006.07698. ```