--- language: ti license: cc-by-4.0 tags: - geezlab metrics: - accuracy - f1 - precision - recall widget: - text: ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር - text: ወአመ ሳብዕት ዕለት ቦዘወፅአ እምውስተ ሕዝብ ከመ ያስተጋብእ ወኢረከበ። - text: እሊ እግል ኖሱ አሳስ ተጠውር ወዐቦት ክምሰልቱ ሸክ ኢወትውዴ። - text: ኣኩኽር ፡ ልሽክክ ናው ጀረቢነዅስክ ክሙኑኽር ክራውል ሕበርሲድኖ ገረሰነኵ። - text: ነገ ለግማሽ ፍፃሜ ያለፉትን አሳውቀንና አስመርጠናችሁ እንሸልማለን። base_model: fgaim/tiroberta-base model-index: - name: geezswitch-tiroberta results: [] --- # TiRoBERTa-GeezSwitch This model is a fine-tuned version of [fgaim/tiroberta-base](https://huggingface.co/fgaim/tiroberta-base) on the [GeezSwitch](https://github.com/fgaim/geezswitch-data) dataset. It achieves the following results on the test set: - F1: 0.9948 - Recall: 0.9948 - Precision: 0.9948 - Accuracy: 0.9948 - Loss: 0.0222 ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - seed: 42 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1 ### Citation If you use this model or the GeezSwitch model in your research, please cite as follows: ```markdown @inproceedings{fgaim2022geezswitch, title={GeezSwitch: Language Identification in Typologically Related Low-resourced East African Languages}, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference}, year={2022} } ```