File size: 18,261 Bytes
42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 002bd9d 42f6af3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
### Relevant imports & set up
```python
!pip install geopy > delete.txt
!pip install datasets > delete.txt
!pip install torch torchvision datasets > delete.txt
!pip install huggingface_hub > delete.txt
!rm delete.txt
```
```python
!pip install transformers
import transformers
```
```python
!huggingface-cli login --token [your_token]
```
```python
lat_mean = 39.95156937654321
lat_std = 0.0005992518588323268
lon_mean = -75.19136795987654
lon_std = 0.0007030395253318959
```
### Instructions
Our current best performing model is an ensemble of multiple models. To run it on hidden test data, first run the model definitions.
#### Load and define models
```python
from transformers import AutoModelForImageClassification, PretrainedConfig, PreTrainedModel
import torch
import torch.nn as nn
import os
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
class CustomConvNeXtConfig(PretrainedConfig):
model_type = "custom-convnext"
def __init__(self, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.num_labels = num_labels # Register number of labels (output dimensions)
class CustomConvNeXtModel(PreTrainedModel):
config_class = CustomConvNeXtConfig
def __init__(self, config, model_name="facebook/convnext-tiny-224",
num_classes=2, train_final_layer_only=False):
super().__init__(config)
# Load pre-trained ConvNeXt model from Hugging Face
self.convnext = AutoModelForImageClassification.from_pretrained(model_name)
# Access the input features of the existing classifier
in_features = self.convnext.classifier.in_features
# Modify the classifier layer to match the number of output classes
self.convnext.classifier = nn.Linear(in_features, num_classes)
# Freeze previous weights if only training the final layer
if train_final_layer_only:
for name, param in self.convnext.named_parameters():
if "classifier" not in name:
param.requires_grad = False
else:
print(f"Unfrozen layer: {name}")
def forward(self, x):
return self.convnext(x)
@classmethod
def from_pretrained(cls, repo_id, model_name="facebook/convnext-tiny-224", **kwargs):
"""Load model weights and configuration from Hugging Face Hub."""
# Download model.safetensors from Hugging Face Hub
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
# Download config.json from Hugging Face Hub
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Load configuration
config = CustomConvNeXtConfig.from_pretrained(config_path)
# Create the model
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
# Load state_dict from safetensors file
from safetensors.torch import load_file # Safetensors library
state_dict = load_file(model_path)
model.load_state_dict(state_dict)
return model
class CustomResNetConfig(PretrainedConfig):
model_type = "custom-resnet"
def __init__(self, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.num_labels = num_labels # Register number of labels (output dimensions)
class CustomResNetModel(nn.Module, PyTorchModelHubMixin):
config_class = CustomResNetConfig
def __init__(self, model_name="microsoft/resnet-18",
num_classes=2,
train_final_layer_only=False):
super().__init__()
# Load pre-trained ResNet model from Hugging Face
self.resnet = AutoModelForImageClassification.from_pretrained(model_name)
# Access the Linear layer within the Sequential classifier
in_features = self.resnet.classifier[1].in_features # Accessing the Linear layer within the Sequential
# Modify the classifier layer to have the desired number of output classes
self.resnet.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features, num_classes)
)
self.config = CustomResNetConfig(num_labels=num_classes)
# Freeze previous weights
if train_final_layer_only:
for name, param in self.resnet.named_parameters():
if "classifier" not in name:
param.requires_grad = False
else:
print(f"Unfrozen layer: {name}")
def forward(self, x):
return self.resnet(x)
def save_pretrained(self, save_directory, **kwargs):
"""Save model weights and custom configuration in Hugging Face format."""
os.makedirs(save_directory, exist_ok=True)
# Save model weights
torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
# Save configuration
self.config.save_pretrained(save_directory)
@classmethod
def from_pretrained(cls, repo_id, model_name="microsoft/resnet-18", **kwargs):
"""Load model weights and configuration from Hugging Face Hub or local directory."""
# Download pytorch_model.bin from Hugging Face Hub
model_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
# Download config.json from Hugging Face Hub
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Load configuration
config = CustomResNetConfig.from_pretrained(config_path)
# Create the model
model = cls(model_name=model_name, num_classes=config.num_labels)
# Load state_dict
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
return model
class CustomEfficientNetConfig(PretrainedConfig):
model_type = "custom-efficientnet"
def __init__(self, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.num_labels = num_labels # Register number of labels (output dimensions)
class CustomEfficientNetModel(PreTrainedModel):
config_class = CustomEfficientNetConfig
def __init__(self, config, model_name="google/efficientnet-b0",
num_classes=2, train_final_layer_only=False):
super().__init__(config)
# Load pre-trained EfficientNet model from Hugging Face
self.efficientnet = AutoModelForImageClassification.from_pretrained(model_name)
# Access the input features of the existing classifier
in_features = self.efficientnet.classifier.in_features
# Modify the classifier layer to match the number of output classes
self.efficientnet.classifier = nn.Sequential(
nn.Linear(in_features, num_classes)
)
# Freeze previous weights if only training the final layer
if train_final_layer_only:
for name, param in self.efficientnet.named_parameters():
if "classifier" not in name:
param.requires_grad = False
else:
print(f"Unfrozen layer: {name}")
def forward(self, x):
return self.efficientnet(x)
@classmethod
def from_pretrained(cls, repo_id, model_name="google/efficientnet-b0", **kwargs):
"""Load model weights and configuration from Hugging Face Hub."""
# Attempt to download the safetensors model file
try:
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
state_dict = load_file(model_path)
except Exception as e:
raise ValueError(
f"Failed to download or load 'model.safetensors' from {repo_id}. Ensure the file exists."
) from e
# Download config.json from Hugging Face Hub
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Load configuration
config = CustomEfficientNetConfig.from_pretrained(config_path)
# Create the model
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
# Load the state_dict into the model
model.load_state_dict(state_dict)
return model
class CustomViTConfig(PretrainedConfig):
model_type = "custom-vit"
def __init__(self, num_labels=2, **kwargs):
super().__init__(**kwargs)
self.num_labels = num_labels # Register number of labels (output dimensions)
class CustomViTModel(PreTrainedModel):
config_class = CustomViTConfig
def __init__(self, config, model_name="google/vit-base-patch16-224",
num_classes=2, train_final_layer_only=False):
super().__init__(config)
# Load pre-trained ViT model from Hugging Face
self.vit = AutoModelForImageClassification.from_pretrained(model_name)
# Access the input features of the existing classifier
in_features = self.vit.classifier.in_features
# Modify the classifier layer to match the number of output classes
self.vit.classifier = nn.Linear(in_features, num_classes)
# Freeze previous weights if only training the final layer
if train_final_layer_only:
for name, param in self.vit.named_parameters():
if "classifier" not in name:
param.requires_grad = False
else:
print(f"Unfrozen layer: {name}")
def forward(self, x):
return self.vit(x)
@classmethod
def from_pretrained(cls, repo_id, model_name="google/vit-base-patch16-224", **kwargs):
# Attempt to download the safetensors model file
try:
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
state_dict = load_file(model_path)
except Exception as e:
raise ValueError(
f"Failed to download or load 'model.safetensors' from {repo_id}. Ensure the file exists."
) from e
# Download config.json from Hugging Face Hub
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
# Load configuration
config = CustomViTConfig.from_pretrained(config_path)
# Create the model
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
# Load the state_dict into the model
model.load_state_dict(state_dict)
return model
# Define the WeightedEnsembleModel class
class WeightedEnsembleModel(nn.Module):
def __init__(self, models, weights):
"""
Initialize the ensemble model with individual models and their weights.
"""
super(WeightedEnsembleModel, self).__init__()
self.models = nn.ModuleList(models) # Wrap models in ModuleList
self.weights = weights
def forward(self, images):
"""
Forward pass for the ensemble model.
Performs weighted averaging of logits from individual models.
"""
ensemble_logits = torch.zeros((images.size(0), 2)).to(images.device) # Initialize logits
for model, weight in zip(self.models, self.weights):
outputs = model(images)
logits = outputs.logits if hasattr(outputs, "logits") else outputs # Extract logits
ensemble_logits += weight * logits # Weighted sum of logits
return ensemble_logits
```
Now, load the model weights from huggingface.
```python
from transformers import AutoModelForImageClassification
import torch
from sklearn.metrics import mean_absolute_error, mean_squared_error
import matplotlib.pyplot as plt
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
```
```python
#resnet
resnet = CustomResNetModel.from_pretrained(
"final-project-5190/model-resnet-50-base",
model_name="microsoft/resnet-50"
)
#convnext
convnext=CustomConvNeXtModel.from_pretrained(
"final-project-5190/model-convnext-tiny-reducePlateau",
model_name="facebook/convnext-tiny-224")
#vit
vit = CustomViTModel.from_pretrained(
"final-project-5190/model-ViT-base",
model_name="google/vit-base-patch16-224"
)
#efficientnet
efficientnet = CustomEfficientNetModel.from_pretrained(
"final-project-5190/model-efficientnet-b0-base",
model_name="google/efficientnet-b0"
)
models = [convnext, resnet, vit, efficientnet]
weights = [0.28, 0.26, 0.20, 0.27]
```
#### For data loading
```python
# Download
from datasets import load_dataset, Image
```
```python
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoConfig
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
from PIL import Image
import os
import numpy as np
class GPSImageDataset(Dataset):
def __init__(self, hf_dataset, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None):
self.hf_dataset = hf_dataset
self.transform = transform
# Compute mean and std from the dataframe if not provided
self.latitude_mean = lat_mean if lat_mean is not None else np.mean(np.array(self.hf_dataset['Latitude']))
self.latitude_std = lat_std if lat_std is not None else np.std(np.array(self.hf_dataset['Latitude']))
self.longitude_mean = lon_mean if lon_mean is not None else np.mean(np.array(self.hf_dataset['Longitude']))
self.longitude_std = lon_std if lon_std is not None else np.std(np.array(self.hf_dataset['Longitude']))
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
# Extract data
example = self.hf_dataset[idx]
# Load and process the image
image = example['image']
latitude = example['Latitude']
longitude = example['Longitude']
# image = image.rotate(-90, expand=True)
if self.transform:
image = self.transform(image)
# Normalize GPS coordinates
latitude = (latitude - self.latitude_mean) / self.latitude_std
longitude = (longitude - self.longitude_mean) / self.longitude_std
gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
return image, gps_coords
```
```python
# Dataloader + Visualize
transform = transforms.Compose([
transforms.RandomResizedCrop(224), # Random crop and resize to 224x224
transforms.RandomHorizontalFlip(), # Random horizontal flip
# transforms.RandomRotation(degrees=15), # Random rotation between -15 and 15 degrees
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # Random color jitter
# transforms.GaussianBlur(kernel_size=(3, 5), sigma=(0.1, 2.0)),
# transforms.RandomPerspective(distortion_scale=0.5, p=0.5),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Optionally, you can create a separate transform for inference without augmentations
inference_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
```
Here's an exmaple of us testing the ensemble on the release test set. You can just change the load release_data line below and run the rest of the code to obtain rMSE.
```python
# Load test data
release_data = load_dataset("gydou/released_img", split="train")
```
```python
# Create dataset and dataloader using training mean and std
rel_dataset = GPSImageDataset(
hf_dataset=release_data,
transform=inference_transform,
lat_mean=lat_mean,
lat_std=lat_std,
lon_mean=lon_mean,
lon_std=lon_std
)
rel_dataloader = DataLoader(rel_dataset, batch_size=32, shuffle=False)
```
```python
# ensemble
ensemble_model = WeightedEnsembleModel(models=models, weights=weights).to(device)
# Validation
all_preds = []
all_actuals = []
ensemble_model.eval()
with torch.no_grad():
for images, gps_coords in rel_dataloader:
images, gps_coords = images.to(device), gps_coords.to(device)
# Weighted ensemble prediction using the new model
ensemble_logits = ensemble_model(images)
# Denormalize predictions and actual values
preds = ensemble_logits.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
actuals = gps_coords.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
all_preds.append(preds)
all_actuals.append(actuals)
# Concatenate all batches
all_preds = torch.cat(all_preds).numpy()
all_actuals = torch.cat(all_actuals).numpy()
# Compute error metrics
mae = mean_absolute_error(all_actuals, all_preds)
rmse = mean_squared_error(all_actuals, all_preds, squared=False)
print(f'Mean Absolute Error: {mae}')
print(f'Root Mean Squared Error: {rmse}')
# Convert predictions and actuals to meters
latitude_mean_radians = np.radians(lat_mean) # Convert to radians for cosine
meters_per_degree_latitude = 111000 # Constant
meters_per_degree_longitude = 111000 * np.cos(latitude_mean_radians) # Adjusted for latitude mean
all_preds_meters = all_preds.copy()
all_preds_meters[:, 0] *= meters_per_degree_latitude # Latitude to meters
all_preds_meters[:, 1] *= meters_per_degree_longitude # Longitude to meters
all_actuals_meters = all_actuals.copy()
all_actuals_meters[:, 0] *= meters_per_degree_latitude # Latitude to meters
all_actuals_meters[:, 1] *= meters_per_degree_longitude # Longitude to meters
# Compute error metrics in meters
mae_meters = mean_absolute_error(all_actuals_meters, all_preds_meters)
rmse_meters = mean_squared_error(all_actuals_meters, all_preds_meters, squared=False)
print(f"Mean Absolute Error (meters): {mae_meters:.2f}")
print(f"Root Mean Squared Error (meters): {rmse_meters:.2f}")
```
After running inference on the release test set, our results are the following.
- Release Dataset Mean Absolute Error: 0.0004267849560326909
- Release Dataset Root Mean Squared Error: 0.0005247778631268114
- Mean Absolute Error (meters): 41.90
- Root Mean Squared Error (meters): 51.29 |