readme update
Browse files- README copy.md +514 -0
README copy.md
ADDED
@@ -0,0 +1,514 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Relevant imports & set up
|
2 |
+
```python
|
3 |
+
!pip install geopy > delete.txt
|
4 |
+
!pip install datasets > delete.txt
|
5 |
+
!pip install torch torchvision datasets > delete.txt
|
6 |
+
!pip install huggingface_hub > delete.txt
|
7 |
+
!rm delete.txt
|
8 |
+
```
|
9 |
+
|
10 |
+
```python
|
11 |
+
!pip install transformers
|
12 |
+
import transformers
|
13 |
+
```
|
14 |
+
|
15 |
+
```python
|
16 |
+
!huggingface-cli login --token [your_token]
|
17 |
+
```
|
18 |
+
|
19 |
+
```python
|
20 |
+
lat_mean = 39.95156937654321
|
21 |
+
lat_std = 0.0005992518588323268
|
22 |
+
lon_mean = -75.19136795987654
|
23 |
+
lon_std = 0.0007030395253318959
|
24 |
+
```
|
25 |
+
|
26 |
+
### Instructions
|
27 |
+
Our current best performing model is an ensemble of multiple models. To run it on hidden test data, first run the model definitions.
|
28 |
+
|
29 |
+
#### Load and define models
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import AutoModelForImageClassification, PretrainedConfig, PreTrainedModel
|
33 |
+
import torch
|
34 |
+
import torch.nn as nn
|
35 |
+
import os
|
36 |
+
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
37 |
+
|
38 |
+
class CustomConvNeXtConfig(PretrainedConfig):
|
39 |
+
model_type = "custom-convnext"
|
40 |
+
|
41 |
+
def __init__(self, num_labels=2, **kwargs):
|
42 |
+
super().__init__(**kwargs)
|
43 |
+
self.num_labels = num_labels # Register number of labels (output dimensions)
|
44 |
+
|
45 |
+
class CustomConvNeXtModel(PreTrainedModel):
|
46 |
+
config_class = CustomConvNeXtConfig
|
47 |
+
|
48 |
+
def __init__(self, config, model_name="facebook/convnext-tiny-224",
|
49 |
+
num_classes=2, train_final_layer_only=False):
|
50 |
+
super().__init__(config)
|
51 |
+
|
52 |
+
# Load pre-trained ConvNeXt model from Hugging Face
|
53 |
+
self.convnext = AutoModelForImageClassification.from_pretrained(model_name)
|
54 |
+
|
55 |
+
# Access the input features of the existing classifier
|
56 |
+
in_features = self.convnext.classifier.in_features
|
57 |
+
|
58 |
+
# Modify the classifier layer to match the number of output classes
|
59 |
+
self.convnext.classifier = nn.Linear(in_features, num_classes)
|
60 |
+
|
61 |
+
# Freeze previous weights if only training the final layer
|
62 |
+
if train_final_layer_only:
|
63 |
+
for name, param in self.convnext.named_parameters():
|
64 |
+
if "classifier" not in name:
|
65 |
+
param.requires_grad = False
|
66 |
+
else:
|
67 |
+
print(f"Unfrozen layer: {name}")
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
return self.convnext(x)
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def from_pretrained(cls, repo_id, model_name="facebook/convnext-tiny-224", **kwargs):
|
74 |
+
"""Load model weights and configuration from Hugging Face Hub."""
|
75 |
+
# Download model.safetensors from Hugging Face Hub
|
76 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
|
77 |
+
|
78 |
+
# Download config.json from Hugging Face Hub
|
79 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
80 |
+
|
81 |
+
# Load configuration
|
82 |
+
config = CustomConvNeXtConfig.from_pretrained(config_path)
|
83 |
+
|
84 |
+
# Create the model
|
85 |
+
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
|
86 |
+
|
87 |
+
# Load state_dict from safetensors file
|
88 |
+
from safetensors.torch import load_file # Safetensors library
|
89 |
+
state_dict = load_file(model_path)
|
90 |
+
model.load_state_dict(state_dict)
|
91 |
+
|
92 |
+
return model
|
93 |
+
|
94 |
+
|
95 |
+
class CustomResNetConfig(PretrainedConfig):
|
96 |
+
model_type = "custom-resnet"
|
97 |
+
|
98 |
+
def __init__(self, num_labels=2, **kwargs):
|
99 |
+
super().__init__(**kwargs)
|
100 |
+
self.num_labels = num_labels # Register number of labels (output dimensions)
|
101 |
+
|
102 |
+
class CustomResNetModel(nn.Module, PyTorchModelHubMixin):
|
103 |
+
config_class = CustomResNetConfig
|
104 |
+
|
105 |
+
def __init__(self, model_name="microsoft/resnet-18",
|
106 |
+
num_classes=2,
|
107 |
+
train_final_layer_only=False):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
# Load pre-trained ResNet model from Hugging Face
|
111 |
+
self.resnet = AutoModelForImageClassification.from_pretrained(model_name)
|
112 |
+
|
113 |
+
# Access the Linear layer within the Sequential classifier
|
114 |
+
in_features = self.resnet.classifier[1].in_features # Accessing the Linear layer within the Sequential
|
115 |
+
|
116 |
+
# Modify the classifier layer to have the desired number of output classes
|
117 |
+
self.resnet.classifier = nn.Sequential(
|
118 |
+
nn.Flatten(),
|
119 |
+
nn.Linear(in_features, num_classes)
|
120 |
+
)
|
121 |
+
|
122 |
+
self.config = CustomResNetConfig(num_labels=num_classes)
|
123 |
+
|
124 |
+
# Freeze previous weights
|
125 |
+
if train_final_layer_only:
|
126 |
+
for name, param in self.resnet.named_parameters():
|
127 |
+
if "classifier" not in name:
|
128 |
+
param.requires_grad = False
|
129 |
+
else:
|
130 |
+
print(f"Unfrozen layer: {name}")
|
131 |
+
|
132 |
+
def forward(self, x):
|
133 |
+
return self.resnet(x)
|
134 |
+
|
135 |
+
def save_pretrained(self, save_directory, **kwargs):
|
136 |
+
"""Save model weights and custom configuration in Hugging Face format."""
|
137 |
+
os.makedirs(save_directory, exist_ok=True)
|
138 |
+
|
139 |
+
# Save model weights
|
140 |
+
torch.save(self.state_dict(), os.path.join(save_directory, "pytorch_model.bin"))
|
141 |
+
|
142 |
+
# Save configuration
|
143 |
+
self.config.save_pretrained(save_directory)
|
144 |
+
|
145 |
+
@classmethod
|
146 |
+
def from_pretrained(cls, repo_id, model_name="microsoft/resnet-18", **kwargs):
|
147 |
+
"""Load model weights and configuration from Hugging Face Hub or local directory."""
|
148 |
+
# Download pytorch_model.bin from Hugging Face Hub
|
149 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
|
150 |
+
|
151 |
+
# Download config.json from Hugging Face Hub
|
152 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
153 |
+
|
154 |
+
# Load configuration
|
155 |
+
config = CustomResNetConfig.from_pretrained(config_path)
|
156 |
+
|
157 |
+
# Create the model
|
158 |
+
model = cls(model_name=model_name, num_classes=config.num_labels)
|
159 |
+
|
160 |
+
# Load state_dict
|
161 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
|
162 |
+
|
163 |
+
return model
|
164 |
+
|
165 |
+
|
166 |
+
class CustomEfficientNetConfig(PretrainedConfig):
|
167 |
+
model_type = "custom-efficientnet"
|
168 |
+
|
169 |
+
def __init__(self, num_labels=2, **kwargs):
|
170 |
+
super().__init__(**kwargs)
|
171 |
+
self.num_labels = num_labels # Register number of labels (output dimensions)
|
172 |
+
|
173 |
+
class CustomEfficientNetModel(PreTrainedModel):
|
174 |
+
config_class = CustomEfficientNetConfig
|
175 |
+
|
176 |
+
def __init__(self, config, model_name="google/efficientnet-b0",
|
177 |
+
num_classes=2, train_final_layer_only=False):
|
178 |
+
super().__init__(config)
|
179 |
+
|
180 |
+
# Load pre-trained EfficientNet model from Hugging Face
|
181 |
+
self.efficientnet = AutoModelForImageClassification.from_pretrained(model_name)
|
182 |
+
|
183 |
+
# Access the input features of the existing classifier
|
184 |
+
in_features = self.efficientnet.classifier.in_features
|
185 |
+
|
186 |
+
# Modify the classifier layer to match the number of output classes
|
187 |
+
self.efficientnet.classifier = nn.Sequential(
|
188 |
+
nn.Linear(in_features, num_classes)
|
189 |
+
)
|
190 |
+
|
191 |
+
# Freeze previous weights if only training the final layer
|
192 |
+
if train_final_layer_only:
|
193 |
+
for name, param in self.efficientnet.named_parameters():
|
194 |
+
if "classifier" not in name:
|
195 |
+
param.requires_grad = False
|
196 |
+
else:
|
197 |
+
print(f"Unfrozen layer: {name}")
|
198 |
+
|
199 |
+
def forward(self, x):
|
200 |
+
return self.efficientnet(x)
|
201 |
+
|
202 |
+
@classmethod
|
203 |
+
def from_pretrained(cls, repo_id, model_name="google/efficientnet-b0", **kwargs):
|
204 |
+
"""Load model weights and configuration from Hugging Face Hub."""
|
205 |
+
# Attempt to download the safetensors model file
|
206 |
+
try:
|
207 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
|
208 |
+
state_dict = load_file(model_path)
|
209 |
+
except Exception as e:
|
210 |
+
raise ValueError(
|
211 |
+
f"Failed to download or load 'model.safetensors' from {repo_id}. Ensure the file exists."
|
212 |
+
) from e
|
213 |
+
|
214 |
+
# Download config.json from Hugging Face Hub
|
215 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
216 |
+
|
217 |
+
# Load configuration
|
218 |
+
config = CustomEfficientNetConfig.from_pretrained(config_path)
|
219 |
+
|
220 |
+
# Create the model
|
221 |
+
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
|
222 |
+
|
223 |
+
# Load the state_dict into the model
|
224 |
+
model.load_state_dict(state_dict)
|
225 |
+
|
226 |
+
return model
|
227 |
+
|
228 |
+
|
229 |
+
class CustomViTConfig(PretrainedConfig):
|
230 |
+
model_type = "custom-vit"
|
231 |
+
|
232 |
+
def __init__(self, num_labels=2, **kwargs):
|
233 |
+
super().__init__(**kwargs)
|
234 |
+
self.num_labels = num_labels # Register number of labels (output dimensions)
|
235 |
+
|
236 |
+
class CustomViTModel(PreTrainedModel):
|
237 |
+
config_class = CustomViTConfig
|
238 |
+
|
239 |
+
def __init__(self, config, model_name="google/vit-base-patch16-224",
|
240 |
+
num_classes=2, train_final_layer_only=False):
|
241 |
+
super().__init__(config)
|
242 |
+
|
243 |
+
# Load pre-trained ViT model from Hugging Face
|
244 |
+
self.vit = AutoModelForImageClassification.from_pretrained(model_name)
|
245 |
+
|
246 |
+
# Access the input features of the existing classifier
|
247 |
+
in_features = self.vit.classifier.in_features
|
248 |
+
|
249 |
+
# Modify the classifier layer to match the number of output classes
|
250 |
+
self.vit.classifier = nn.Linear(in_features, num_classes)
|
251 |
+
|
252 |
+
# Freeze previous weights if only training the final layer
|
253 |
+
if train_final_layer_only:
|
254 |
+
for name, param in self.vit.named_parameters():
|
255 |
+
if "classifier" not in name:
|
256 |
+
param.requires_grad = False
|
257 |
+
else:
|
258 |
+
print(f"Unfrozen layer: {name}")
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
return self.vit(x)
|
262 |
+
|
263 |
+
@classmethod
|
264 |
+
def from_pretrained(cls, repo_id, model_name="google/vit-base-patch16-224", **kwargs):
|
265 |
+
# Attempt to download the safetensors model file
|
266 |
+
try:
|
267 |
+
model_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
|
268 |
+
state_dict = load_file(model_path)
|
269 |
+
except Exception as e:
|
270 |
+
raise ValueError(
|
271 |
+
f"Failed to download or load 'model.safetensors' from {repo_id}. Ensure the file exists."
|
272 |
+
) from e
|
273 |
+
|
274 |
+
# Download config.json from Hugging Face Hub
|
275 |
+
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
|
276 |
+
|
277 |
+
# Load configuration
|
278 |
+
config = CustomViTConfig.from_pretrained(config_path)
|
279 |
+
|
280 |
+
# Create the model
|
281 |
+
model = cls(config=config, model_name=model_name, num_classes=config.num_labels)
|
282 |
+
|
283 |
+
# Load the state_dict into the model
|
284 |
+
model.load_state_dict(state_dict)
|
285 |
+
|
286 |
+
return model
|
287 |
+
|
288 |
+
|
289 |
+
# Define the WeightedEnsembleModel class
|
290 |
+
class WeightedEnsembleModel(nn.Module):
|
291 |
+
def __init__(self, models, weights):
|
292 |
+
"""
|
293 |
+
Initialize the ensemble model with individual models and their weights.
|
294 |
+
"""
|
295 |
+
super(WeightedEnsembleModel, self).__init__()
|
296 |
+
self.models = nn.ModuleList(models) # Wrap models in ModuleList
|
297 |
+
self.weights = weights
|
298 |
+
|
299 |
+
def forward(self, images):
|
300 |
+
"""
|
301 |
+
Forward pass for the ensemble model.
|
302 |
+
Performs weighted averaging of logits from individual models.
|
303 |
+
"""
|
304 |
+
ensemble_logits = torch.zeros((images.size(0), 2)).to(images.device) # Initialize logits
|
305 |
+
for model, weight in zip(self.models, self.weights):
|
306 |
+
outputs = model(images)
|
307 |
+
logits = outputs.logits if hasattr(outputs, "logits") else outputs # Extract logits
|
308 |
+
ensemble_logits += weight * logits # Weighted sum of logits
|
309 |
+
return ensemble_logits
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
```
|
314 |
+
|
315 |
+
|
316 |
+
Now, load the model weights from huggingface.
|
317 |
+
```python
|
318 |
+
from transformers import AutoModelForImageClassification
|
319 |
+
import torch
|
320 |
+
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
321 |
+
import matplotlib.pyplot as plt
|
322 |
+
import numpy as np
|
323 |
+
|
324 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
325 |
+
```
|
326 |
+
|
327 |
+
```python
|
328 |
+
#resnet
|
329 |
+
resnet = CustomResNetModel.from_pretrained(
|
330 |
+
"final-project-5190/model-resnet-50-base",
|
331 |
+
model_name="microsoft/resnet-50"
|
332 |
+
)
|
333 |
+
|
334 |
+
#convnext
|
335 |
+
convnext=CustomConvNeXtModel.from_pretrained(
|
336 |
+
"final-project-5190/model-convnext-tiny-reducePlateau",
|
337 |
+
model_name="facebook/convnext-tiny-224")
|
338 |
+
|
339 |
+
#vit
|
340 |
+
vit = CustomViTModel.from_pretrained(
|
341 |
+
"final-project-5190/model-ViT-base",
|
342 |
+
model_name="google/vit-base-patch16-224"
|
343 |
+
)
|
344 |
+
|
345 |
+
#efficientnet
|
346 |
+
efficientnet = CustomEfficientNetModel.from_pretrained(
|
347 |
+
"final-project-5190/model-efficientnet-b0-base",
|
348 |
+
model_name="google/efficientnet-b0"
|
349 |
+
)
|
350 |
+
|
351 |
+
models = [convnext, resnet, vit, efficientnet]
|
352 |
+
weights = [0.28, 0.26, 0.20, 0.27]
|
353 |
+
```
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
#### For data loading
|
358 |
+
```python
|
359 |
+
# Download
|
360 |
+
from datasets import load_dataset, Image
|
361 |
+
```
|
362 |
+
|
363 |
+
```python
|
364 |
+
import torch
|
365 |
+
import torch.nn as nn
|
366 |
+
import torchvision.models as models
|
367 |
+
import torchvision.transforms as transforms
|
368 |
+
from torch.utils.data import DataLoader, Dataset
|
369 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoConfig
|
370 |
+
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
371 |
+
from PIL import Image
|
372 |
+
import os
|
373 |
+
import numpy as np
|
374 |
+
|
375 |
+
class GPSImageDataset(Dataset):
|
376 |
+
def __init__(self, hf_dataset, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None):
|
377 |
+
self.hf_dataset = hf_dataset
|
378 |
+
self.transform = transform
|
379 |
+
|
380 |
+
# Compute mean and std from the dataframe if not provided
|
381 |
+
self.latitude_mean = lat_mean if lat_mean is not None else np.mean(np.array(self.hf_dataset['Latitude']))
|
382 |
+
self.latitude_std = lat_std if lat_std is not None else np.std(np.array(self.hf_dataset['Latitude']))
|
383 |
+
self.longitude_mean = lon_mean if lon_mean is not None else np.mean(np.array(self.hf_dataset['Longitude']))
|
384 |
+
self.longitude_std = lon_std if lon_std is not None else np.std(np.array(self.hf_dataset['Longitude']))
|
385 |
+
|
386 |
+
def __len__(self):
|
387 |
+
return len(self.hf_dataset)
|
388 |
+
|
389 |
+
def __getitem__(self, idx):
|
390 |
+
# Extract data
|
391 |
+
example = self.hf_dataset[idx]
|
392 |
+
|
393 |
+
# Load and process the image
|
394 |
+
image = example['image']
|
395 |
+
latitude = example['Latitude']
|
396 |
+
longitude = example['Longitude']
|
397 |
+
# image = image.rotate(-90, expand=True)
|
398 |
+
if self.transform:
|
399 |
+
image = self.transform(image)
|
400 |
+
|
401 |
+
# Normalize GPS coordinates
|
402 |
+
latitude = (latitude - self.latitude_mean) / self.latitude_std
|
403 |
+
longitude = (longitude - self.longitude_mean) / self.longitude_std
|
404 |
+
gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
|
405 |
+
|
406 |
+
return image, gps_coords
|
407 |
+
```
|
408 |
+
|
409 |
+
```python
|
410 |
+
# Dataloader + Visualize
|
411 |
+
transform = transforms.Compose([
|
412 |
+
transforms.RandomResizedCrop(224), # Random crop and resize to 224x224
|
413 |
+
transforms.RandomHorizontalFlip(), # Random horizontal flip
|
414 |
+
# transforms.RandomRotation(degrees=15), # Random rotation between -15 and 15 degrees
|
415 |
+
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # Random color jitter
|
416 |
+
# transforms.GaussianBlur(kernel_size=(3, 5), sigma=(0.1, 2.0)),
|
417 |
+
# transforms.RandomPerspective(distortion_scale=0.5, p=0.5),
|
418 |
+
transforms.ToTensor(),
|
419 |
+
|
420 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
421 |
+
std=[0.229, 0.224, 0.225])
|
422 |
+
])
|
423 |
+
|
424 |
+
# Optionally, you can create a separate transform for inference without augmentations
|
425 |
+
inference_transform = transforms.Compose([
|
426 |
+
transforms.Resize((224, 224)),
|
427 |
+
transforms.ToTensor(),
|
428 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
429 |
+
std=[0.229, 0.224, 0.225])
|
430 |
+
])
|
431 |
+
```
|
432 |
+
|
433 |
+
Here's an exmaple of us testing the ensemble on the release test set. You can just change the load release_data line below and run the rest of the code to obtain rMSE.
|
434 |
+
|
435 |
+
```python
|
436 |
+
# Load test data
|
437 |
+
release_data = load_dataset("gydou/released_img", split="train")
|
438 |
+
```
|
439 |
+
|
440 |
+
```python
|
441 |
+
# Create dataset and dataloader using training mean and std
|
442 |
+
rel_dataset = GPSImageDataset(
|
443 |
+
hf_dataset=release_data,
|
444 |
+
transform=inference_transform,
|
445 |
+
lat_mean=lat_mean,
|
446 |
+
lat_std=lat_std,
|
447 |
+
lon_mean=lon_mean,
|
448 |
+
lon_std=lon_std
|
449 |
+
)
|
450 |
+
rel_dataloader = DataLoader(rel_dataset, batch_size=32, shuffle=False)
|
451 |
+
```
|
452 |
+
|
453 |
+
|
454 |
+
```python
|
455 |
+
# ensemble
|
456 |
+
ensemble_model = WeightedEnsembleModel(models=models, weights=weights).to(device)
|
457 |
+
|
458 |
+
# Validation
|
459 |
+
all_preds = []
|
460 |
+
all_actuals = []
|
461 |
+
|
462 |
+
ensemble_model.eval()
|
463 |
+
with torch.no_grad():
|
464 |
+
for images, gps_coords in rel_dataloader:
|
465 |
+
images, gps_coords = images.to(device), gps_coords.to(device)
|
466 |
+
|
467 |
+
# Weighted ensemble prediction using the new model
|
468 |
+
ensemble_logits = ensemble_model(images)
|
469 |
+
|
470 |
+
# Denormalize predictions and actual values
|
471 |
+
preds = ensemble_logits.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
|
472 |
+
actuals = gps_coords.cpu() * torch.tensor([lat_std, lon_std]) + torch.tensor([lat_mean, lon_mean])
|
473 |
+
|
474 |
+
all_preds.append(preds)
|
475 |
+
all_actuals.append(actuals)
|
476 |
+
|
477 |
+
# Concatenate all batches
|
478 |
+
all_preds = torch.cat(all_preds).numpy()
|
479 |
+
all_actuals = torch.cat(all_actuals).numpy()
|
480 |
+
|
481 |
+
# Compute error metrics
|
482 |
+
mae = mean_absolute_error(all_actuals, all_preds)
|
483 |
+
rmse = mean_squared_error(all_actuals, all_preds, squared=False)
|
484 |
+
|
485 |
+
print(f'Mean Absolute Error: {mae}')
|
486 |
+
print(f'Root Mean Squared Error: {rmse}')
|
487 |
+
|
488 |
+
# Convert predictions and actuals to meters
|
489 |
+
latitude_mean_radians = np.radians(lat_mean) # Convert to radians for cosine
|
490 |
+
meters_per_degree_latitude = 111000 # Constant
|
491 |
+
meters_per_degree_longitude = 111000 * np.cos(latitude_mean_radians) # Adjusted for latitude mean
|
492 |
+
|
493 |
+
all_preds_meters = all_preds.copy()
|
494 |
+
all_preds_meters[:, 0] *= meters_per_degree_latitude # Latitude to meters
|
495 |
+
all_preds_meters[:, 1] *= meters_per_degree_longitude # Longitude to meters
|
496 |
+
|
497 |
+
all_actuals_meters = all_actuals.copy()
|
498 |
+
all_actuals_meters[:, 0] *= meters_per_degree_latitude # Latitude to meters
|
499 |
+
all_actuals_meters[:, 1] *= meters_per_degree_longitude # Longitude to meters
|
500 |
+
|
501 |
+
# Compute error metrics in meters
|
502 |
+
mae_meters = mean_absolute_error(all_actuals_meters, all_preds_meters)
|
503 |
+
rmse_meters = mean_squared_error(all_actuals_meters, all_preds_meters, squared=False)
|
504 |
+
|
505 |
+
print(f"Mean Absolute Error (meters): {mae_meters:.2f}")
|
506 |
+
print(f"Root Mean Squared Error (meters): {rmse_meters:.2f}")
|
507 |
+
|
508 |
+
```
|
509 |
+
|
510 |
+
After running inference on the release test set, our results are the following.
|
511 |
+
- Release Dataset Mean Absolute Error: 0.0004267849560326909
|
512 |
+
- Release Dataset Root Mean Squared Error: 0.0005247778631268114
|
513 |
+
- Mean Absolute Error (meters): 41.90
|
514 |
+
- Root Mean Squared Error (meters): 51.29
|