a-r-r-o-w HF staff commited on
Commit
4fe5cd1
·
verified ·
1 Parent(s): cc17dca

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - Wan-AI/Wan2.1-T2V-1.3B
4
+ - Wan-AI/Wan2.1-T2V-1.3B-Diffusers
5
+ datasets: finetrainers/crush-smol
6
+ library_name: diffusers
7
+ license: other
8
+ license_link: https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B/blob/main/LICENSE.txt
9
+ widget:
10
+ - text: >-
11
+ PIKA_CRUSH A large metal cylinder is seen pressing down on a pile of
12
+ colorful jelly beans, flattening them as if they were under a hydraulic
13
+ press.
14
+ output:
15
+ url: final-3000-0-2-PIKA_CRUSH-A-large-metal-.mp4
16
+ - text: >-
17
+ PIKA_CRUSH A green cube is being compressed by a hydraulic press, which
18
+ flattens the object as if it were under a hydraulic press. The press is
19
+ shown in action, with the cube being squeezed into a smaller shape
20
+ output:
21
+ url: final-3000-1-2-PIKA_CRUSH-A-green-cube-i.mp4
22
+ - text: >-
23
+ PIKA_CRUSH A large metal cylinder is seen pressing down on a pile of Oreo
24
+ cookies, flattening them as if they were under a hydraulic press.
25
+ output:
26
+ url: final-3000-1-2-PIKA_CRUSH-A-large-metal-.mp4
27
+ tags:
28
+ - text-to-video
29
+ - diffusers-training
30
+ - diffusers
31
+ - template:sd-lora
32
+ - wan
33
+ ---
34
+
35
+ <Gallery />
36
+
37
+ This is a LoRA fine-tune of the [Wan-AI/Wan2.1-T2V-1.3B-Diffusers](https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B-Diffusers) model on the
38
+ [finetrainers/crush-smol](https://huggingface.co/datasets/finetrainers/crush-smol) dataset.
39
+
40
+ Code: https://github.com/a-r-r-o-w/finetrainers
41
+
42
+ > [!IMPORTANT]
43
+ > This is an experimental checkpoint and its poor generalization is well-known.
44
+
45
+ Inference code:
46
+
47
+ ```python
48
+ import torch
49
+ from diffusers import WanPipeline
50
+ from diffusers.utils import export_to_video
51
+
52
+ pipe = WanPipeline.from_pretrained(
53
+ "Wan-AI/Wan2.1-T2V-1.3B-Diffusers", torch_dtype=torch.bfloat16
54
+ ).to("cuda")
55
+ pipe.load_lora_weights("finetrainers/Wan2.1-T2V-1.3B-crush-smol-v0", adapter_name="wan-lora")
56
+ pipe.set_adapters(["wan-lora"], [0.75])
57
+
58
+ video = pipe("<my-awesome-prompt>").frames[0]
59
+ export_to_video(video, "output.mp4", fps=24)
60
+ ```
61
+
62
+ Training logs are available on WandB [here](https://wandb.ai/aryanvs/finetrainers-wan).