Upload create_lora.py with huggingface_hub
Browse files- create_lora.py +80 -0
create_lora.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from
|
3 |
+
https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
from diffusers import CogVideoXTransformer3DModel
|
7 |
+
from tqdm.auto import tqdm
|
8 |
+
from safetensors.torch import save_file
|
9 |
+
import torch
|
10 |
+
|
11 |
+
RANK = 64
|
12 |
+
CLAMP_QUANTILE = 0.99
|
13 |
+
|
14 |
+
|
15 |
+
# Comes from
|
16 |
+
# https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py#L9
|
17 |
+
def extract_lora(diff, rank):
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
diff = diff.to("cuda")
|
20 |
+
|
21 |
+
is_conv2d = (len(diff.shape) == 4)
|
22 |
+
kernel_size = None if not is_conv2d else diff.size()[2:4]
|
23 |
+
is_conv2d_3x3 = is_conv2d and kernel_size != (1, 1)
|
24 |
+
out_dim, in_dim = diff.size()[0:2]
|
25 |
+
rank = min(rank, in_dim, out_dim)
|
26 |
+
|
27 |
+
if is_conv2d:
|
28 |
+
if is_conv2d_3x3:
|
29 |
+
diff = diff.flatten(start_dim=1)
|
30 |
+
else:
|
31 |
+
diff = diff.squeeze()
|
32 |
+
|
33 |
+
U, S, Vh = torch.linalg.svd(diff.float())
|
34 |
+
U = U[:, :rank]
|
35 |
+
S = S[:rank]
|
36 |
+
U = U @ torch.diag(S)
|
37 |
+
Vh = Vh[:rank, :]
|
38 |
+
|
39 |
+
dist = torch.cat([U.flatten(), Vh.flatten()])
|
40 |
+
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
|
41 |
+
low_val = -hi_val
|
42 |
+
|
43 |
+
U = U.clamp(low_val, hi_val)
|
44 |
+
Vh = Vh.clamp(low_val, hi_val)
|
45 |
+
if is_conv2d:
|
46 |
+
U = U.reshape(out_dim, rank, 1, 1)
|
47 |
+
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
|
48 |
+
return (U.cpu(), Vh.cpu())
|
49 |
+
|
50 |
+
|
51 |
+
transformer_finetuned = CogVideoXTransformer3DModel.from_pretrained(
|
52 |
+
"cogvideox-cakeify", subfolder="transformer", torch_dtype=torch.bfloat16
|
53 |
+
)
|
54 |
+
state_dict_ft = transformer_finetuned.state_dict()
|
55 |
+
|
56 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
57 |
+
"THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
|
58 |
+
)
|
59 |
+
state_dict = transformer.state_dict()
|
60 |
+
output_dict = {}
|
61 |
+
|
62 |
+
for k in tqdm(state_dict, desc="Extracting LoRA..."):
|
63 |
+
original_param = state_dict[k]
|
64 |
+
finetuned_param = state_dict_ft[k]
|
65 |
+
if len(original_param.shape) >= 2:
|
66 |
+
diff = finetuned_param.float() - original_param.float()
|
67 |
+
out = extract_lora(diff, RANK)
|
68 |
+
name = k
|
69 |
+
|
70 |
+
if name.endswith(".weight"):
|
71 |
+
name = name[:-len(".weight")]
|
72 |
+
down_key = "{}.lora_A.weight".format(name)
|
73 |
+
up_key = "{}.lora_B.weight".format(name)
|
74 |
+
|
75 |
+
output_dict[up_key] = out[0].contiguous().to(finetuned_param.dtype)
|
76 |
+
output_dict[down_key] = out[1].contiguous().to(finetuned_param.dtype)
|
77 |
+
|
78 |
+
output_dict = {f"transformer.{k}": v for k, v in output_dict.items()}
|
79 |
+
save_file(output_dict, "extracted_cakeify_lora_64.safetensors")
|
80 |
+
print(f"LoRA saved and it contains {len(output_dict)} keys.")
|