sayakpaul HF staff commited on
Commit
ba0bbec
·
verified ·
1 Parent(s): 39bdb45

Upload create_lora.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. create_lora.py +80 -0
create_lora.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Adapted from
3
+ https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py
4
+ """
5
+
6
+ from diffusers import CogVideoXTransformer3DModel
7
+ from tqdm.auto import tqdm
8
+ from safetensors.torch import save_file
9
+ import torch
10
+
11
+ RANK = 64
12
+ CLAMP_QUANTILE = 0.99
13
+
14
+
15
+ # Comes from
16
+ # https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py#L9
17
+ def extract_lora(diff, rank):
18
+ if torch.cuda.is_available():
19
+ diff = diff.to("cuda")
20
+
21
+ is_conv2d = (len(diff.shape) == 4)
22
+ kernel_size = None if not is_conv2d else diff.size()[2:4]
23
+ is_conv2d_3x3 = is_conv2d and kernel_size != (1, 1)
24
+ out_dim, in_dim = diff.size()[0:2]
25
+ rank = min(rank, in_dim, out_dim)
26
+
27
+ if is_conv2d:
28
+ if is_conv2d_3x3:
29
+ diff = diff.flatten(start_dim=1)
30
+ else:
31
+ diff = diff.squeeze()
32
+
33
+ U, S, Vh = torch.linalg.svd(diff.float())
34
+ U = U[:, :rank]
35
+ S = S[:rank]
36
+ U = U @ torch.diag(S)
37
+ Vh = Vh[:rank, :]
38
+
39
+ dist = torch.cat([U.flatten(), Vh.flatten()])
40
+ hi_val = torch.quantile(dist, CLAMP_QUANTILE)
41
+ low_val = -hi_val
42
+
43
+ U = U.clamp(low_val, hi_val)
44
+ Vh = Vh.clamp(low_val, hi_val)
45
+ if is_conv2d:
46
+ U = U.reshape(out_dim, rank, 1, 1)
47
+ Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1])
48
+ return (U.cpu(), Vh.cpu())
49
+
50
+
51
+ transformer_finetuned = CogVideoXTransformer3DModel.from_pretrained(
52
+ "cogvideox-cakeify", subfolder="transformer", torch_dtype=torch.bfloat16
53
+ )
54
+ state_dict_ft = transformer_finetuned.state_dict()
55
+
56
+ transformer = CogVideoXTransformer3DModel.from_pretrained(
57
+ "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16
58
+ )
59
+ state_dict = transformer.state_dict()
60
+ output_dict = {}
61
+
62
+ for k in tqdm(state_dict, desc="Extracting LoRA..."):
63
+ original_param = state_dict[k]
64
+ finetuned_param = state_dict_ft[k]
65
+ if len(original_param.shape) >= 2:
66
+ diff = finetuned_param.float() - original_param.float()
67
+ out = extract_lora(diff, RANK)
68
+ name = k
69
+
70
+ if name.endswith(".weight"):
71
+ name = name[:-len(".weight")]
72
+ down_key = "{}.lora_A.weight".format(name)
73
+ up_key = "{}.lora_B.weight".format(name)
74
+
75
+ output_dict[up_key] = out[0].contiguous().to(finetuned_param.dtype)
76
+ output_dict[down_key] = out[1].contiguous().to(finetuned_param.dtype)
77
+
78
+ output_dict = {f"transformer.{k}": v for k, v in output_dict.items()}
79
+ save_file(output_dict, "extracted_cakeify_lora_64.safetensors")
80
+ print(f"LoRA saved and it contains {len(output_dict)} keys.")