""" Adapted from https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py """ from diffusers import CogVideoXTransformer3DModel from tqdm.auto import tqdm from safetensors.torch import save_file import torch RANK = 64 CLAMP_QUANTILE = 0.99 # Comes from # https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py#L9 def extract_lora(diff, rank): if torch.cuda.is_available(): diff = diff.to("cuda") is_conv2d = (len(diff.shape) == 4) kernel_size = None if not is_conv2d else diff.size()[2:4] is_conv2d_3x3 = is_conv2d and kernel_size != (1, 1) out_dim, in_dim = diff.size()[0:2] rank = min(rank, in_dim, out_dim) if is_conv2d: if is_conv2d_3x3: diff = diff.flatten(start_dim=1) else: diff = diff.squeeze() U, S, Vh = torch.linalg.svd(diff.float()) U = U[:, :rank] S = S[:rank] U = U @ torch.diag(S) Vh = Vh[:rank, :] dist = torch.cat([U.flatten(), Vh.flatten()]) hi_val = torch.quantile(dist, CLAMP_QUANTILE) low_val = -hi_val U = U.clamp(low_val, hi_val) Vh = Vh.clamp(low_val, hi_val) if is_conv2d: U = U.reshape(out_dim, rank, 1, 1) Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) return (U.cpu(), Vh.cpu()) transformer_finetuned = CogVideoXTransformer3DModel.from_pretrained( "cogvideox-cakeify", subfolder="transformer", torch_dtype=torch.bfloat16 ) state_dict_ft = transformer_finetuned.state_dict() transformer = CogVideoXTransformer3DModel.from_pretrained( "THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16 ) state_dict = transformer.state_dict() output_dict = {} for k in tqdm(state_dict, desc="Extracting LoRA..."): original_param = state_dict[k] finetuned_param = state_dict_ft[k] if len(original_param.shape) >= 2: diff = finetuned_param.float() - original_param.float() out = extract_lora(diff, RANK) name = k if name.endswith(".weight"): name = name[:-len(".weight")] down_key = "{}.lora_A.weight".format(name) up_key = "{}.lora_B.weight".format(name) output_dict[up_key] = out[0].contiguous().to(finetuned_param.dtype) output_dict[down_key] = out[1].contiguous().to(finetuned_param.dtype) output_dict = {f"transformer.{k}": v for k, v in output_dict.items()} save_file(output_dict, "extracted_cakeify_lora_64.safetensors") print(f"LoRA saved and it contains {len(output_dict)} keys.")