File size: 2,942 Bytes
7c803ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
from threading import Thread
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
model_id = "fireballoon/baichuan-vicuna-chinese-7b"
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on device:", torch_device)
print("CPU threads:", torch.get_num_threads())
if torch_device == "cuda":
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).cuda()
else:
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False)
def run_generation(history, *args, **kwargs):
# Get the model and tokenizer, and tokenize the user text.
instruction = "A chat between a curious user and an artificial intelligence assistant. " \
"The assistant gives helpful, detailed, and polite answers to the user's questions."
context = ''.join([f" USER: {turn[0].strip()} ASSISTANT: {turn[1].strip()} </s>" for turn in history[:-1]])
prompt = instruction + context + f" USER: {history[-1][0].strip()} ASSISTANT:"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
print()
print(prompt)
print('##', input_ids.size())
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=2048,
do_sample=True,
temperature=0.7,
repetition_penalty=1.1,
top_p=0.85
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
history[-1][1] = ""
print("")
for new_text in streamer:
history[-1][1] += new_text
print(new_text, end="", flush=True)
yield history
print('</s>')
return history
def reset_textbox():
return gr.update(value='')
with gr.Blocks() as demo:
gr.Markdown(
"# Baichuan Vicuna Chinese\n"
f"[{model_id}](https://huggingface.co/{model_id}):使用中英双语sharegpt数据全参数微调的对话模型,基于baichuan-7b"
)
chatbot = gr.Chatbot().style(height=600)
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])
def user(user_message, history):
return gr.update(value="", interactive=False), history + [[user_message, None]]
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
run_generation, chatbot, chatbot
)
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
demo.queue()
demo.launch(server_name='0.0.0.0')
|