File size: 13,764 Bytes
a5eeb6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import dataclasses
from typing import Any, Dict, Optional, Union
import numpy as np
import torch
import torch.nn.functional as F
import transformers
from .ultravox_config import UltravoxConfig
@dataclasses.dataclass
class DataCollatorForSeq2SeqWithAudio(transformers.DataCollatorForSeq2Seq):
# when enabled, the alt_input_ids, alt_attention_mask, and alt_labels fields are used for computing the KL loss in UltravoxModel
include_alt_fields: bool = False
def __call__(self, features, *args, **kwargs):
audio_values = [f.pop("audio_values", None) for f in features]
audio_lens = [f.pop("audio_lens", None) for f in features]
if self.include_alt_fields:
# these fields are hard-coded in the transformer data collator, so they need special handling before calling the super method
alt_features = [
{
"input_ids": f.pop("alt_input_ids"),
"attention_mask": f.pop("alt_attention_mask"),
"labels": f.pop("alt_labels"),
}
for f in features
]
batch = super().__call__(features, *args, **kwargs)
if self.include_alt_fields:
alt_batch = super().__call__(alt_features, *args, **kwargs)
batch["alt_input_ids"] = alt_batch["input_ids"]
batch["alt_attention_mask"] = alt_batch["attention_mask"]
batch["alt_labels"] = alt_batch["labels"]
# Pad the last dimension of all audio_values to the same length, with 0s on the right.
if audio_values and audio_values[0] is not None:
max_len = max([x.shape[-1] for x in audio_values])
batch["audio_values"] = torch.cat(
[F.pad(x, (0, max_len - x.shape[-1])) for x in audio_values]
)
if self.tokenizer.padding_side == "left":
input_ids_lens = torch.LongTensor(
[f["input_ids"].shape[-1] for f in features]
)
displacement = batch["input_ids"].shape[-1] - input_ids_lens
batch["audio_token_start_idx"] += displacement.to(
batch["audio_token_start_idx"].device
)
# batch["audio_lens"].shape = (B,)
batch["audio_lens"] = torch.cat(audio_lens)
return batch
class UltravoxProcessor(transformers.ProcessorMixin):
"""
Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.
Args:
audio_processor: The audio processor for the audio encoder.
tokenizer: The tokenizer for the language model.
"""
attributes = ["audio_processor", "tokenizer"]
audio_processor_class = (
"Wav2Vec2Processor",
"SeamlessM4TFeatureExtractor",
"WhisperProcessor",
)
tokenizer_class = (
"PreTrainedTokenizer",
"PreTrainedTokenizerFast",
)
tokenizer: transformers.PreTrainedTokenizerBase
audio_processor: transformers.ProcessorMixin
def __init__(
self,
audio_processor=None,
tokenizer=None,
audio_padding: str = "longest",
encoder_ds_factor: int = 320,
stack_factor: int = 8,
audio_placeholder: str = "<|audio|>",
# Defaults to whisper encoder context size
audio_context_size: Optional[int] = 3000,
):
"""
Args:
audio_processor: The audio processor for the audio encoder.
tokenizer: The tokenizer for the language model.
audio_padding: The padding strategy for the audio encoder.
encoder_ds_factor: The downsample factor of the audio encoder.
stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
audio_placeholder: The placeholder for the audio in the text.
audio_context_size: The maximum number of frames that the audio encoder can handle.
"""
self.audio_padding = audio_padding
self.encoder_ds_factor = encoder_ds_factor
self.stack_factor = stack_factor
self.audio_placeholder = audio_placeholder
self.audio_token_replacement = tokenizer.eos_token
self.audio_context_size = audio_context_size
assert (
self.audio_token_replacement is not None
), "The tokenizer has no EOS token. Cannot recover."
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
config: UltravoxConfig = transformers.AutoConfig.from_pretrained(
pretrained_model_name_or_path, **kwargs
)
audio_processor = transformers.AutoProcessor.from_pretrained(
config.audio_model_id
or config.audio_config._name_or_path
or "facebook/wav2vec2-base-960h"
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
pretrained_model_name_or_path, **kwargs
)
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
return cls(
audio_processor=audio_processor,
tokenizer=tokenizer,
stack_factor=config.stack_factor,
)
def _chunk_and_pad_audio(self, audio_values: torch.Tensor) -> Dict[str, Any]:
"""
Processes the audio tensor by chunking it according to the audio_context_size,
padding the last chunk if needed, and returns a dictionary with updated audio data.
Args:
audio_values (torch.Tensor): A tensor of audio values (e.g., in B, D, T format).
Returns:
Dict[str, Any]: Dictionary with the following keys:
- "audio_values": The concatenated audio tensor after chunking and padding.
- "audio_lens": List of lengths (as torch.Tensor) for each chunk.
- "audio_batch_size": A list with one integer representing the number of chunks.
"""
result: Dict[str, Any] = {}
if self.audio_context_size and audio_values.shape[-1] > self.audio_context_size:
audio_chunks = list(
torch.split(audio_values, self.audio_context_size, dim=-1)
)
valid_lengths = [chunk.shape[-1] for chunk in audio_chunks]
result = {
"audio_lens": [torch.as_tensor(length) for length in valid_lengths]
}
# Pad the last chunk to the full context length if needed.
last_chunk = audio_chunks[-1]
pad_size = self.audio_context_size - last_chunk.shape[-1]
if pad_size > 0:
audio_chunks[-1] = F.pad(last_chunk, (0, pad_size))
else:
audio_chunks = [audio_values]
result = {"audio_lens": [torch.as_tensor(audio_values.shape[-1])]}
result["audio_values"] = torch.cat(audio_chunks)
result["audio_batch_size"] = [result["audio_values"].shape[0]]
return result
def __call__(
self,
text: Optional[str] = None,
audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
sampling_rate: Optional[int] = None,
return_tensors: Optional[
Union[str, transformers.TensorType]
] = transformers.TensorType.PYTORCH,
**kwargs,
) -> transformers.BatchFeature:
"""
Main method to prepare for the model one text sequence and audio. This method forwards the `text`
and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring
of the above two methods for more information.
Args:
text (`str`, `List[str]`):
The sequence to be encoded. Sequence can be a string or (pretokenized string).
audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a
NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the
sample length of the audio.
sampling_rate (`int`, *optional*, defaults to 16000):
Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
you are doing.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
- **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
Returned when `audio` is not `None`.
- **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
"""
# TODO: Add support for multiple audio and text inputs.
data: Dict[str, Any] = {}
audio_embed_frames = 0
if audio is not None and len(audio) > 0:
audio_len = audio.shape[-1]
# It's guaranteed that the number of frames is less than or equal to this amount.
# For Whisper this is exact AFAICT, but for Wav2Vec2 it's an upper bound.
# Currently, StackAudioFrames makes sure an over-estimation won't cause issues by padding the audio embeddings.
nb_encoder_frames = int(round(audio_len / self.encoder_ds_factor + 1e-4))
audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor))
data["audio_token_len"] = [audio_embed_frames]
# Main audio processing. The processor is model-specific.
x = self.audio_processor(
audio,
sampling_rate=sampling_rate,
padding="longest",
max_length=audio_len, # The whisper audio_processor can handle audio lengths longer than 30 seconds
return_attention_mask=True,
**kwargs,
)
if "input_features" in x:
audio_values = x.input_features
else:
audio_values = x.input_values
audio_values = torch.tensor(audio_values)
chunk_and_pad_results = self._chunk_and_pad_audio(audio_values)
data["audio_values"] = chunk_and_pad_results["audio_values"]
data["audio_lens"] = chunk_and_pad_results["audio_lens"]
data["audio_batch_size"] = chunk_and_pad_results["audio_batch_size"]
if text is not None:
assert isinstance(
text, str
), "Text must be a string. Batch mode not supported yet."
if self.audio_placeholder in text:
if "audio_token_len" not in data:
raise ValueError(
f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text."
)
start_idx = len(
self.tokenizer.encode(
text[: text.index(self.audio_placeholder)],
add_special_tokens=False,
)
)
data["audio_token_start_idx"] = [start_idx]
# Replace the audio placeholder with the audio token.
# e.g. "Transcribe\n<|audio|>" -> "Transcribe\n</s></s></s></s></s></s></s></s>"
# where the number of </s> is the number of audio frames.
text = text.replace(
self.audio_placeholder,
self.audio_token_replacement * audio_embed_frames,
)
# Special tokens like BOS should already have been added by the caller.
data.update(self.tokenizer([text], add_special_tokens=False, **kwargs))
return transformers.BatchFeature(data=data, tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
audio_processor_input_names = self.audio_processor.model_input_names
return list(set(tokenizer_input_names + audio_processor_input_names))
UltravoxProcessor.register_for_auto_class()
transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor)
|