# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RWKV5.""" import os import re from typing import TYPE_CHECKING, List, Optional, Tuple from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer from transformers.utils import logging if TYPE_CHECKING: pass logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "ArthurZ/rwkv-5-utf": "https://huggingface.co/ArthurZ/rwkv-5-utf/blob/main/vocab.txt", }, } def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text. The separators are kept """ text = text.strip() if not text: return [] tokens = re.split(b"(?= )", text) return tokens class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token): self.vocab = vocab self.unk_token = unk_token def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = bytes(chars[start:end]) if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break try: cur_substr = cur_substr.decode() except UnicodeDecodeError: cur_substr = str(cur_substr) sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens class Rwkv5Tokenizer(PreTrainedTokenizer): vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = {"ArthurZ/rwkv-5-utf": 2048} model_input_names = ["input_ids", "attention_mask"] def __init__(self, vocab_file, bos_token="", eos_token="", unk_token="", **kwargs): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) with open(vocab_file, "r") as reader: tokens = reader.readlines() vocab = {} for index, token in enumerate(tokens): token = eval(token.rstrip("\n")) vocab[token] = index self.add_bos_token = True self.encoder = vocab self.decoder = {v: k for k, v in vocab.items()} self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.encoder, unk_token=str(unk_token)) self._added_tokens_decoder = {0: AddedToken(str(bos_token))} super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text, split_special_tokens=False): return self.wordpiece_tokenizer.tokenize(text.encode("utf-8")) def _convert_token_to_id(self, token): """Converts a token (byte) to an id using the vocab.""" if token.startswith("b'\\"): token = eval(token) elif not isinstance(token, bytes): token = token.encode("utf-8", errors="replace") return self.encoder.get(token, self.unk_token_id) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (byte) using the vocab.""" token = self.decoder.get(index, self.unk_token) if isinstance(token, (bytes)): token = token.decode("utf-8", errors="replace") return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes""" out_string = b"".join([k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]).decode( "utf-8" ) return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w") as writer: for token, token_index in sorted(self.encoder.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(str(token) + "\n") index += 1 return (vocab_file,) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): if self.add_bos_token: bos_token_ids = [self.bos_token_id] else: bos_token_ids = [] output = bos_token_ids + token_ids_0 if token_ids_1 is None: return output return output + bos_token_ids + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if not self.add_bos_token: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))