Transformers
GGUF
Inference Endpoints
nbeerbower commited on
Commit
0e5efe0
1 Parent(s): 522ad3a

add model files

Browse files
README.md CHANGED
@@ -1,3 +1,96 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model:
5
+ - flammenai/Mahou-1.0-mistral-7B
6
+ datasets:
7
+ - flammenai/Grill-preprod-v1_chatML
8
+ ---
9
+ ![image/png](https://huggingface.co/flammenai/Mahou-1.0-mistral-7B/resolve/main/mahou1.png)
10
+
11
+ # Mahou-1.1-mistral-7B
12
+
13
+ Mahou is our attempt to build a production-ready conversational/roleplay LLM.
14
+
15
+ Future versions will be released iteratively and finetuned from flammen.ai conversational data.
16
+
17
+ ### Chat Format
18
+
19
+ This model has been trained to use ChatML format.
20
+
21
+ ```
22
+ <|im_start|>system
23
+ {{system}}<|im_end|>
24
+ <|im_start|>{{char}}
25
+ {{message}}<|im_end|>
26
+ <|im_start|>{{user}}
27
+ {{message}}<|im_end|>
28
+ ```
29
+
30
+ ### ST Settings
31
+
32
+ 1. Use ChatML for the Context Template.
33
+ 2. Turn on Instruct Mode for ChatML.
34
+ 3. Use the following stopping strings: `["<", "|", "<|", "\n"]`
35
+
36
+ ### Method
37
+
38
+ Finetuned using an A100 on Google Colab.
39
+
40
+ [Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne)
41
+
42
+ ### Configuration
43
+
44
+ LoRA, model, and training settings:
45
+
46
+ ```python
47
+ # LoRA configuration
48
+ peft_config = LoraConfig(
49
+ r=16,
50
+ lora_alpha=16,
51
+ lora_dropout=0.05,
52
+ bias="none",
53
+ task_type="CAUSAL_LM",
54
+ target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
55
+ )
56
+ # Model to fine-tune
57
+ model = AutoModelForCausalLM.from_pretrained(
58
+ model_name,
59
+ torch_dtype=torch.bfloat16,
60
+ load_in_4bit=True
61
+ )
62
+ model.config.use_cache = False
63
+ # Reference model
64
+ ref_model = AutoModelForCausalLM.from_pretrained(
65
+ model_name,
66
+ torch_dtype=torch.bfloat16,
67
+ load_in_4bit=True
68
+ )
69
+ # Training arguments
70
+ training_args = TrainingArguments(
71
+ per_device_train_batch_size=2,
72
+ gradient_accumulation_steps=2,
73
+ gradient_checkpointing=True,
74
+ learning_rate=3e-5,
75
+ lr_scheduler_type="cosine",
76
+ max_steps=200,
77
+ save_strategy="no",
78
+ logging_steps=1,
79
+ output_dir=new_model,
80
+ optim="paged_adamw_32bit",
81
+ warmup_steps=100,
82
+ bf16=True,
83
+ report_to="wandb",
84
+ )
85
+ # Create DPO trainer
86
+ dpo_trainer = DPOTrainer(
87
+ model,
88
+ ref_model,
89
+ args=training_args,
90
+ train_dataset=dataset,
91
+ tokenizer=tokenizer,
92
+ peft_config=peft_config,
93
+ beta=0.1,
94
+ force_use_ref_model=True
95
+ )
96
+ ```
ggml-model-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be36b35e91549e2a5e9434c00792e376a02e70af4d4b25d608a63a1da30ed06d
3
+ size 3518986016
ggml-model-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24031b823ae87a86491f6c2cb19a627b24440cef2e96208bd173c66614095ff7
3
+ size 4368439072
ggml-model-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5661398f8e5ad6a788868e7711bb13d154331348e6e206bf1ab7865cc66c20d1
3
+ size 5131409184