change config and fix training tokenizer script
Browse files
config.json
CHANGED
@@ -21,5 +21,5 @@
|
|
21 |
"transformers_version": "4.9.0.dev0",
|
22 |
"type_vocab_size": 1,
|
23 |
"use_cache": true,
|
24 |
-
"vocab_size":
|
25 |
}
|
|
|
21 |
"transformers_version": "4.9.0.dev0",
|
22 |
"type_vocab_size": 1,
|
23 |
"use_cache": true,
|
24 |
+
"vocab_size": 50265
|
25 |
}
|
events.out.tfevents.1626329391.t1v-n-bf8aeee7-w-0.4713.3.v2
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0306cd10b128d1cf1aa7395239854fb0fea8ac8263aebc218c879dc141dbece3
|
3 |
-
size 73496
|
|
|
|
|
|
|
|
train_tokenizer.py
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
-
#pip install -U pythainlp
|
2 |
-
|
3 |
from datasets import load_dataset, concatenate_datasets
|
4 |
from tokenizers import ByteLevelBPETokenizer
|
5 |
from transformers import AutoConfig
|
6 |
from pythainlp.tokenize import word_tokenize
|
7 |
|
8 |
-
|
9 |
language = "th"
|
10 |
model_config = "roberta-base"
|
11 |
model_dir = model_config + f"-pretrained-{language}"
|
@@ -14,21 +11,22 @@ config.save_pretrained(f"{model_dir}")
|
|
14 |
|
15 |
# load dataset
|
16 |
# only the train subset for tokenizing purposes
|
17 |
-
raw_dataset = load_dataset(
|
18 |
-
|
|
|
19 |
|
20 |
# Instantiate tokenizer
|
21 |
tokenizer = ByteLevelBPETokenizer()
|
22 |
|
23 |
-
|
24 |
## For Thai NLP Library, please feel free to check https://pythainlp.github.io/docs/2.3/api/tokenize.html
|
25 |
def th_tokenize(text):
|
26 |
result = " ".join(word_tokenize(text, engine="newmm", keep_whitespace=False))
|
27 |
return result
|
28 |
|
|
|
29 |
def batch_iterator(batch_size=1000):
|
30 |
for i in range(0, len(raw_dataset), batch_size):
|
31 |
-
yield [th_tokenize(text) for text in raw_dataset[
|
32 |
|
33 |
|
34 |
# Customized training
|
@@ -36,7 +34,7 @@ tokenizer.train_from_iterator(
|
|
36 |
batch_iterator(),
|
37 |
vocab_size=50265,
|
38 |
min_frequency=2,
|
39 |
-
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>",
|
40 |
)
|
41 |
|
42 |
# Save files to disk
|
|
|
|
|
|
|
1 |
from datasets import load_dataset, concatenate_datasets
|
2 |
from tokenizers import ByteLevelBPETokenizer
|
3 |
from transformers import AutoConfig
|
4 |
from pythainlp.tokenize import word_tokenize
|
5 |
|
|
|
6 |
language = "th"
|
7 |
model_config = "roberta-base"
|
8 |
model_dir = model_config + f"-pretrained-{language}"
|
|
|
11 |
|
12 |
# load dataset
|
13 |
# only the train subset for tokenizing purposes
|
14 |
+
raw_dataset = load_dataset(
|
15 |
+
"oscar", f"unshuffled_deduplicated_{language}", split="train"
|
16 |
+
)
|
17 |
|
18 |
# Instantiate tokenizer
|
19 |
tokenizer = ByteLevelBPETokenizer()
|
20 |
|
|
|
21 |
## For Thai NLP Library, please feel free to check https://pythainlp.github.io/docs/2.3/api/tokenize.html
|
22 |
def th_tokenize(text):
|
23 |
result = " ".join(word_tokenize(text, engine="newmm", keep_whitespace=False))
|
24 |
return result
|
25 |
|
26 |
+
|
27 |
def batch_iterator(batch_size=1000):
|
28 |
for i in range(0, len(raw_dataset), batch_size):
|
29 |
+
yield [th_tokenize(text) for text in raw_dataset[i : i + batch_size]["text"]]
|
30 |
|
31 |
|
32 |
# Customized training
|
|
|
34 |
batch_iterator(),
|
35 |
vocab_size=50265,
|
36 |
min_frequency=2,
|
37 |
+
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>",],
|
38 |
)
|
39 |
|
40 |
# Save files to disk
|