Create Thai Tokenizer script
Browse files- train_tokenizer.py +43 -0
train_tokenizer.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pip install -U pythainlp
|
2 |
+
|
3 |
+
from datasets import load_dataset, concatenate_datasets
|
4 |
+
from tokenizers import ByteLevelBPETokenizer
|
5 |
+
from transformers import AutoConfig
|
6 |
+
from pythainlp.tokenize import word_tokenize
|
7 |
+
|
8 |
+
|
9 |
+
language = "th"
|
10 |
+
model_config = "roberta-base"
|
11 |
+
model_dir = model_config + f"-pretrained-{language}"
|
12 |
+
config = AutoConfig.from_pretrained(model_config)
|
13 |
+
config.save_pretrained(f"{model_dir}")
|
14 |
+
|
15 |
+
# load dataset
|
16 |
+
# only the train subset for tokenizing purposes
|
17 |
+
raw_dataset = load_dataset("oscar", f"unshuffled_deduplicated_{language}")
|
18 |
+
raw_dataset = load_dataset("oscar", f"unshuffled_deduplicated_th")
|
19 |
+
|
20 |
+
# Instantiate tokenizer
|
21 |
+
tokenizer = ByteLevelBPETokenizer()
|
22 |
+
|
23 |
+
|
24 |
+
## For Thai NLP Library, please feel free to check https://pythainlp.github.io/docs/2.3/api/tokenize.html
|
25 |
+
def th_tokenize(text):
|
26 |
+
result = " ".join(word_tokenize(text, engine="newmm", keep_whitespace=False))
|
27 |
+
return result
|
28 |
+
|
29 |
+
def batch_iterator(batch_size=1000):
|
30 |
+
for i in range(0, len(raw_dataset), batch_size):
|
31 |
+
yield [th_tokenize(text) for text in raw_dataset["train"][i: i + batch_size]["text"]]
|
32 |
+
|
33 |
+
|
34 |
+
# Customized training
|
35 |
+
tokenizer.train_from_iterator(
|
36 |
+
batch_iterator(),
|
37 |
+
vocab_size=50265,
|
38 |
+
min_frequency=2,
|
39 |
+
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>", ],
|
40 |
+
)
|
41 |
+
|
42 |
+
# Save files to disk
|
43 |
+
tokenizer.save(f"./tokenizer.json")
|