Upload ITERForRelationExtraction
Browse files- README.md +104 -0
- config.json +78 -0
- generation_config.json +5 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- KISTI-AI/Scideberta-full
|
5 |
+
library_name: transformers
|
6 |
+
tags:
|
7 |
+
- relation extraction
|
8 |
+
- nlp
|
9 |
+
model-index:
|
10 |
+
- name: iter-scierc-deberta-full
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: relation-extraction
|
14 |
+
dataset:
|
15 |
+
name: scierc
|
16 |
+
type: scierc
|
17 |
+
metrics:
|
18 |
+
- name: F1
|
19 |
+
type: f1
|
20 |
+
value: 39.359
|
21 |
+
---
|
22 |
+
|
23 |
+
|
24 |
+
# ITER: Iterative Transformer-based Entity Recognition and Relation Extraction
|
25 |
+
|
26 |
+
This model checkpoint is part of the collection of models published alongside our paper ITER,
|
27 |
+
[accepted at EMNLP 2024](https://aclanthology.org/2024.findings-emnlp.655/).<br>
|
28 |
+
To ease reproducibility and enable open research, our source code has been published on [GitHub](https://github.com/fleonce/iter).
|
29 |
+
|
30 |
+
This model achieved an F1 score of `39.359` on dataset `scierc`
|
31 |
+
|
32 |
+
### Using ITER in your code
|
33 |
+
|
34 |
+
First, install ITER in your preferred environment:
|
35 |
+
|
36 |
+
```text
|
37 |
+
pip install git+https://github.com/fleonce/iter
|
38 |
+
```
|
39 |
+
|
40 |
+
To use our model, refer to the following code:
|
41 |
+
```python
|
42 |
+
from iter import ITERForRelationExtraction
|
43 |
+
|
44 |
+
model = ITERForRelationExtraction.from_pretrained("fleonce/iter-scierc-deberta-full")
|
45 |
+
tokenizer = model.tokenizer
|
46 |
+
|
47 |
+
encodings = tokenizer(
|
48 |
+
"An art exhibit at the Hakawati Theatre in Arab east Jerusalem was a series of portraits of Palestinians killed in the rebellion .",
|
49 |
+
return_tensors="pt"
|
50 |
+
)
|
51 |
+
|
52 |
+
generation_output = model.generate(
|
53 |
+
encodings["input_ids"],
|
54 |
+
attention_mask=encodings["attention_mask"],
|
55 |
+
)
|
56 |
+
|
57 |
+
# entities
|
58 |
+
print(generation_output.entities)
|
59 |
+
|
60 |
+
# relations between entities
|
61 |
+
print(generation_output.links)
|
62 |
+
```
|
63 |
+
|
64 |
+
### Checkpoints
|
65 |
+
|
66 |
+
We publish checkpoints for the models performing best on the following datasets:
|
67 |
+
|
68 |
+
- **ACE05**:
|
69 |
+
1. [fleonce/iter-ace05-deberta-large](https://huggingface.co/fleonce/iter-ace05-deberta-large)
|
70 |
+
- **CoNLL04**:
|
71 |
+
1. [fleonce/iter-conll04-deberta-large](https://huggingface.co/fleonce/iter-conll04-deberta-large)
|
72 |
+
- **ADE**:
|
73 |
+
1. [fleonce/iter-ade-deberta-large](https://huggingface.co/fleonce/iter-ade-deberta-large)
|
74 |
+
- **SciERC**:
|
75 |
+
1. [fleonce/iter-scierc-deberta-large](https://huggingface.co/fleonce/iter-scierc-deberta-large)
|
76 |
+
2. [fleonce/iter-scierc-scideberta-full](https://huggingface.co/fleonce/iter-scierc-scideberta-full)
|
77 |
+
- **CoNLL03**:
|
78 |
+
1. [fleonce/iter-conll03-deberta-large](https://huggingface.co/fleonce/iter-conll03-deberta-large)
|
79 |
+
- **GENIA**:
|
80 |
+
1. [fleonce/iter-genia-deberta-large](https://huggingface.co/fleonce/iter-genia-deberta-large)
|
81 |
+
|
82 |
+
|
83 |
+
### Reproducibility
|
84 |
+
|
85 |
+
For each dataset, we selected the best performing checkpoint out of the 5 training runs we performed during training.
|
86 |
+
This model was trained with the following hyperparameters:
|
87 |
+
|
88 |
+
- Seed: `3`
|
89 |
+
- Config: `scierc/d_ff_150`
|
90 |
+
- PyTorch `2.3.0` with CUDA `12.1` and precision `torch.bfloat16`
|
91 |
+
- GPU: `1 NVIDIA GeForce RTX 4090`
|
92 |
+
|
93 |
+
Varying GPU and CUDA version as well as training precision did result in slightly different end results in our tests
|
94 |
+
for reproducibility.
|
95 |
+
|
96 |
+
To train this model, refer to the following command:
|
97 |
+
```shell
|
98 |
+
python3 train.py --dataset scierc/d_ff_150 --transformer KISTI-AI/Scideberta-full --use_bfloat16 --seed 3
|
99 |
+
```
|
100 |
+
|
101 |
+
```text
|
102 |
+
@inproceedings{citation}
|
103 |
+
```
|
104 |
+
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/fleonce/iter-scierc-scideberta-full",
|
3 |
+
"activation_fn": "relu",
|
4 |
+
"architectures": [
|
5 |
+
"ITERForRelationExtraction"
|
6 |
+
],
|
7 |
+
"d_ff": 150,
|
8 |
+
"d_model": 768,
|
9 |
+
"dataset": "scierc",
|
10 |
+
"dropout": 0.3,
|
11 |
+
"entity_types": [
|
12 |
+
"Task",
|
13 |
+
"Method",
|
14 |
+
"Material",
|
15 |
+
"OtherScientificTerm",
|
16 |
+
"Metric",
|
17 |
+
"Generic"
|
18 |
+
],
|
19 |
+
"features": 1385248,
|
20 |
+
"link_types": [
|
21 |
+
"Used-for",
|
22 |
+
"Feature-of",
|
23 |
+
"Hyponym-of",
|
24 |
+
"Evaluate-for",
|
25 |
+
"Part-of",
|
26 |
+
"Compare",
|
27 |
+
"Conjunction"
|
28 |
+
],
|
29 |
+
"max_length": 512,
|
30 |
+
"max_nest_depth": 3,
|
31 |
+
"model_type": "iter",
|
32 |
+
"num_links": 7,
|
33 |
+
"num_types": 7,
|
34 |
+
"threshold": 0.5,
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformer_config": {
|
37 |
+
"_name_or_path": "KISTI-AI/Scideberta-full",
|
38 |
+
"architectures": null,
|
39 |
+
"attention_head_size": 64,
|
40 |
+
"attention_probs_dropout_prob": 0.1,
|
41 |
+
"decoder_start_token_id": null,
|
42 |
+
"eos_token_id": null,
|
43 |
+
"hidden_act": "gelu",
|
44 |
+
"hidden_dropout_prob": 0.1,
|
45 |
+
"hidden_size": 768,
|
46 |
+
"initializer_range": 0.02,
|
47 |
+
"intermediate_size": 3072,
|
48 |
+
"is_encoder_decoder": false,
|
49 |
+
"layer_norm_eps": 1e-07,
|
50 |
+
"max_length": 512,
|
51 |
+
"max_position_embeddings": 512,
|
52 |
+
"max_relative_positions": -1,
|
53 |
+
"model_type": "deberta-v2",
|
54 |
+
"norm_rel_ebd": "layer_norm",
|
55 |
+
"num_attention_heads": 12,
|
56 |
+
"num_hidden_layers": 12,
|
57 |
+
"padding_idx": 0,
|
58 |
+
"pooler_dropout": 0,
|
59 |
+
"pooler_hidden_act": "gelu",
|
60 |
+
"pooler_hidden_size": 768,
|
61 |
+
"pos_att_type": [
|
62 |
+
"p2c",
|
63 |
+
"c2p"
|
64 |
+
],
|
65 |
+
"position_biased_input": false,
|
66 |
+
"position_buckets": 256,
|
67 |
+
"relative_attention": true,
|
68 |
+
"share_att_key": true,
|
69 |
+
"task_specific_params": null,
|
70 |
+
"type_vocab_size": 0,
|
71 |
+
"vocab_size": 128100
|
72 |
+
},
|
73 |
+
"transformers_version": "4.37.0",
|
74 |
+
"use_bias": false,
|
75 |
+
"use_gate": true,
|
76 |
+
"use_mlp": true,
|
77 |
+
"use_scale": false
|
78 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"max_length": 512,
|
4 |
+
"transformers_version": "4.37.0"
|
5 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c64349059cb28c2b8ce7db99744f76cb3f2af7a28a10432e1796c1ad97aab33f
|
3 |
+
size 739972032
|