File size: 7,845 Bytes
c607184
 
 
 
 
 
8e20010
 
 
 
c607184
 
 
8e20010
c607184
 
 
8e20010
 
 
 
c607184
 
 
8e20010
c607184
 
 
8e20010
 
 
 
 
 
 
 
5d9d806
8e20010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c607184
 
 
 
 
8e20010
 
 
 
c607184
 
 
8e20010
 
 
 
 
c607184
 
 
 
 
8e20010
c607184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d9d806
 
8e20010
c607184
 
 
 
 
8e20010
 
 
 
c607184
 
 
8e20010
c607184
5d9d806
 
 
c607184
 
8e20010
 
 
 
5d9d806
8e20010
 
 
 
c607184
5d9d806
 
 
 
 
 
 
 
 
 
 
c607184
 
8e20010
c607184
5d9d806
 
 
c607184
 
8e20010
 
 
 
5d9d806
8e20010
 
 
 
c607184
5d9d806
 
 
 
 
 
 
 
 
 
 
c607184
 
8e20010
 
5d9d806
 
 
8e20010
 
 
c607184
8e20010
 
5d9d806
8e20010
 
 
 
 
5d9d806
 
 
 
 
 
 
 
 
 
 
8e20010
 
c607184
8e20010
c607184
8e20010
 
 
c607184
 
 
5d9d806
 
 
 
 
 
 
 
c607184
8e20010
 
5d9d806
8e20010
 
 
5d9d806
 
 
 
 
 
c607184
 
5d9d806
c607184
 
 
 
 
8e20010
 
 
 
 
 
c607184
5d9d806
 
 
8e20010
5d9d806
8e20010
 
 
c607184
 
5d9d806
c607184
8e20010
c607184
5d9d806
 
 
 
8e20010
 
 
 
 
5d9d806
 
 
c607184
8e20010
 
 
 
 
 
c607184
8e20010
 
 
c607184
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "U8RTc2PmnX-v"
      },
      "source": [
        "Initial setup"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "kGW7vfRkrqHe"
      },
      "outputs": [],
      "source": [
        "!pip install -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "2I850FIsCVNw"
      },
      "outputs": [],
      "source": [
        "from datetime import datetime\n",
        "import os\n",
        "from huggingface_hub import login, upload_folder\n",
        "from google.colab import userdata\n",
        "import shutil\n",
        "\n",
        "HF_TOKEN = userdata.get('HF_TOKEN')\n",
        "login(HF_TOKEN, True)\n",
        "BASE_DATASET='mmlu'\n",
        "REPO_ID='flunardelli/llm-metaeval'\n",
        "BASE_FOLDER=f\"/content/{BASE_DATASET}/\"#{datetime.now().strftime('%Y-%m-%dT%H-%M-%S')}\n",
        "OUTPUT_FOLDER=os.path.join(BASE_FOLDER,'output')\n",
        "TASK_FOLDER=os.path.join(BASE_FOLDER,'tasks')\n",
        "#shutil.rmtree(BASE_FOLDER)\n",
        "os.makedirs(OUTPUT_FOLDER)\n",
        "os.makedirs(TASK_FOLDER)\n",
        "os.environ['HF_TOKEN'] = HF_TOKEN\n",
        "os.environ['OUTPUT_FOLDER'] = OUTPUT_FOLDER\n",
        "os.environ['TASK_FOLDER'] = TASK_FOLDER\n",
        "\n",
        "def hf_upload_folder(folder_path):\n",
        "  upload_folder(\n",
        "      folder_path=folder_path,\n",
        "      path_in_repo=\"evals/\",\n",
        "      repo_id=REPO_ID,\n",
        "      token=HF_TOKEN,\n",
        "      repo_type=\"dataset\"\n",
        "  )\n",
        "\n",
        "def create_task(content, filename):\n",
        "  filename_path = os.path.join(TASK_FOLDER,filename)\n",
        "  with open(filename_path, \"w\") as f:\n",
        "    f.write(content)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Jd2JwKZaPkNS"
      },
      "source": [
        "Create task for MMLU all datasets"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "xP0cC_sHih7C"
      },
      "outputs": [],
      "source": [
        "YAML_mmlu_en_us_string = \"\"\"\n",
        "task: mmlu_all\n",
        "dataset_path: cais/mmlu\n",
        "dataset_name: all\n",
        "description: \"MMLU dataset\"\n",
        "test_split: test\n",
        "fewshot_split: dev\n",
        "fewshot_config:\n",
        "  sampler: first_n\n",
        "output_type: multiple_choice\n",
        "doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
        "doc_to_choice: [\"A\", \"B\", \"C\", \"D\"]\n",
        "doc_to_target: answer\n",
        "metric_list:\n",
        "  - metric: acc\n",
        "    aggregation: mean\n",
        "    higher_is_better: true\n",
        "  - metric: acc_norm\n",
        "    aggregation: mean\n",
        "    higher_is_better: true\n",
        "\"\"\"\n",
        "create_task(YAML_mmlu_en_us_string, 'mmlu_en_us.yaml')\n",
        "os.environ['TASKS'] = 'mmlu_all'\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mJjo_A5tP-Td"
      },
      "source": [
        "Llama Models"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "IzP5nyP0Gwk8"
      },
      "outputs": [],
      "source": [
        "!accelerate launch -m lm_eval \\\n",
        "--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,parallelize=True \\\n",
        "--tasks $TASKS \\\n",
        "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
        "--batch_size 16\n",
        "#--limit 10 \\"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "hf_upload_folder(BASE_FOLDER)"
      ],
      "metadata": {
        "id": "uMoitxJkHerH"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "oIACOAhDW5ow"
      },
      "outputs": [],
      "source": [
        "!accelerate launch -m lm_eval \\\n",
        "--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,parallelize=True \\\n",
        "--tasks $TASKS \\\n",
        "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
        "--batch_size 16\n",
        "#--limit 10 \\"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "hf_upload_folder(BASE_FOLDER)"
      ],
      "metadata": {
        "id": "eIUOqu5sHfkM"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "cFFYPzBIYGf7"
      },
      "outputs": [],
      "source": [
        "!accelerate launch -m lm_eval \\\n",
        "--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,parallelize=True \\\n",
        "--tasks $TASKS \\\n",
        "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
        "--batch_size 16\n",
        "#--limit 10 \\"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "hf_upload_folder(BASE_FOLDER)"
      ],
      "metadata": {
        "id": "xsL82Q4SHgMn"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "1fEX-49hQ-Be"
      },
      "source": [
        "Mistral Models"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "ilu9_ulWTy3p"
      },
      "outputs": [],
      "source": [
        "!accelerate launch -m lm_eval \\\n",
        "--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,parallelize=True \\\n",
        "--tasks $TASKS \\\n",
        "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
        "--batch_size 16\n",
        "#--limit 10 \\"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "hf_upload_folder(BASE_FOLDER)"
      ],
      "metadata": {
        "id": "jE5r8gVDHhAz"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "3cHI2qxN2fJ0"
      },
      "outputs": [],
      "source": [
        "!accelerate launch --multi_gpu --num_processes 4 -m lm_eval  \\\n",
        "--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1 \\\n",
        "--tasks $TASKS \\\n",
        "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
        "--batch_size 8\n",
        "#--limit 10 \\"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "mGGdqBNBzFYL"
      },
      "outputs": [],
      "source": [
        "hf_upload_folder(BASE_FOLDER)"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "gpuType": "L4",
      "machine_shape": "hm",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}