Upload 2 files
Browse files- llm_metaeval_eval_harness_mmlu.ipynb +76 -28
- llm_metaeval_eval_harness_pub.ipynb +133 -77
llm_metaeval_eval_harness_mmlu.ipynb
CHANGED
@@ -34,7 +34,7 @@
|
|
34 |
"from google.colab import userdata\n",
|
35 |
"import shutil\n",
|
36 |
"\n",
|
37 |
-
"HF_TOKEN = userdata.get('
|
38 |
"login(HF_TOKEN, True)\n",
|
39 |
"BASE_DATASET='mmlu'\n",
|
40 |
"REPO_ID='flunardelli/llm-metaeval'\n",
|
@@ -101,7 +101,8 @@
|
|
101 |
" aggregation: mean\n",
|
102 |
" higher_is_better: true\n",
|
103 |
"\"\"\"\n",
|
104 |
-
"create_task(YAML_mmlu_en_us_string, 'mmlu_en_us.yaml')\n"
|
|
|
105 |
]
|
106 |
},
|
107 |
{
|
@@ -117,50 +118,92 @@
|
|
117 |
"cell_type": "code",
|
118 |
"execution_count": null,
|
119 |
"metadata": {
|
|
|
|
|
|
|
120 |
"id": "IzP5nyP0Gwk8"
|
121 |
},
|
122 |
"outputs": [],
|
123 |
"source": [
|
124 |
"!accelerate launch -m lm_eval \\\n",
|
125 |
"--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,parallelize=True \\\n",
|
126 |
-
"--tasks
|
127 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
128 |
"--batch_size 16\n",
|
129 |
"#--limit 10 \\"
|
130 |
]
|
131 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
{
|
133 |
"cell_type": "code",
|
134 |
"execution_count": null,
|
135 |
"metadata": {
|
|
|
|
|
|
|
136 |
"id": "oIACOAhDW5ow"
|
137 |
},
|
138 |
"outputs": [],
|
139 |
"source": [
|
140 |
"!accelerate launch -m lm_eval \\\n",
|
141 |
"--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,parallelize=True \\\n",
|
142 |
-
"--tasks
|
143 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
144 |
"--batch_size 16\n",
|
145 |
"#--limit 10 \\"
|
146 |
]
|
147 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
{
|
149 |
"cell_type": "code",
|
150 |
"execution_count": null,
|
151 |
"metadata": {
|
|
|
|
|
|
|
152 |
"id": "cFFYPzBIYGf7"
|
153 |
},
|
154 |
"outputs": [],
|
155 |
"source": [
|
156 |
"!accelerate launch -m lm_eval \\\n",
|
157 |
"--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,parallelize=True \\\n",
|
158 |
-
"--tasks
|
159 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
160 |
"--batch_size 16\n",
|
161 |
"#--limit 10 \\"
|
162 |
]
|
163 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
{
|
165 |
"cell_type": "markdown",
|
166 |
"metadata": {
|
@@ -172,16 +215,30 @@
|
|
172 |
},
|
173 |
{
|
174 |
"cell_type": "code",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
"source": [
|
176 |
"!accelerate launch -m lm_eval \\\n",
|
177 |
"--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,parallelize=True \\\n",
|
178 |
-
"--tasks
|
179 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
180 |
"--batch_size 16\n",
|
181 |
"#--limit 10 \\"
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
],
|
183 |
"metadata": {
|
184 |
-
"id": "
|
185 |
},
|
186 |
"execution_count": null,
|
187 |
"outputs": []
|
@@ -194,41 +251,32 @@
|
|
194 |
},
|
195 |
"outputs": [],
|
196 |
"source": [
|
197 |
-
"!accelerate launch -m lm_eval
|
198 |
-
"--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1
|
199 |
-
"--tasks
|
200 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
201 |
-
"--batch_size
|
202 |
"#--limit 10 \\"
|
203 |
]
|
204 |
},
|
205 |
-
{
|
206 |
-
"cell_type": "markdown",
|
207 |
-
"metadata": {
|
208 |
-
"id": "ZUTPHnV0kMB1"
|
209 |
-
},
|
210 |
-
"source": [
|
211 |
-
"Save output results"
|
212 |
-
]
|
213 |
-
},
|
214 |
{
|
215 |
"cell_type": "code",
|
216 |
-
"
|
217 |
-
"hf_upload_folder(BASE_FOLDER)"
|
218 |
-
],
|
219 |
"metadata": {
|
220 |
"id": "mGGdqBNBzFYL"
|
221 |
},
|
222 |
-
"
|
223 |
-
"
|
|
|
|
|
224 |
}
|
225 |
],
|
226 |
"metadata": {
|
227 |
"accelerator": "GPU",
|
228 |
"colab": {
|
229 |
-
"gpuType": "
|
230 |
-
"
|
231 |
-
"
|
232 |
},
|
233 |
"kernelspec": {
|
234 |
"display_name": "Python 3",
|
|
|
34 |
"from google.colab import userdata\n",
|
35 |
"import shutil\n",
|
36 |
"\n",
|
37 |
+
"HF_TOKEN = userdata.get('HF_TOKEN')\n",
|
38 |
"login(HF_TOKEN, True)\n",
|
39 |
"BASE_DATASET='mmlu'\n",
|
40 |
"REPO_ID='flunardelli/llm-metaeval'\n",
|
|
|
101 |
" aggregation: mean\n",
|
102 |
" higher_is_better: true\n",
|
103 |
"\"\"\"\n",
|
104 |
+
"create_task(YAML_mmlu_en_us_string, 'mmlu_en_us.yaml')\n",
|
105 |
+
"os.environ['TASKS'] = 'mmlu_all'\n"
|
106 |
]
|
107 |
},
|
108 |
{
|
|
|
118 |
"cell_type": "code",
|
119 |
"execution_count": null,
|
120 |
"metadata": {
|
121 |
+
"colab": {
|
122 |
+
"background_save": true
|
123 |
+
},
|
124 |
"id": "IzP5nyP0Gwk8"
|
125 |
},
|
126 |
"outputs": [],
|
127 |
"source": [
|
128 |
"!accelerate launch -m lm_eval \\\n",
|
129 |
"--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,parallelize=True \\\n",
|
130 |
+
"--tasks $TASKS \\\n",
|
131 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
132 |
"--batch_size 16\n",
|
133 |
"#--limit 10 \\"
|
134 |
]
|
135 |
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"source": [
|
139 |
+
"hf_upload_folder(BASE_FOLDER)"
|
140 |
+
],
|
141 |
+
"metadata": {
|
142 |
+
"id": "uMoitxJkHerH"
|
143 |
+
},
|
144 |
+
"execution_count": null,
|
145 |
+
"outputs": []
|
146 |
+
},
|
147 |
{
|
148 |
"cell_type": "code",
|
149 |
"execution_count": null,
|
150 |
"metadata": {
|
151 |
+
"colab": {
|
152 |
+
"background_save": true
|
153 |
+
},
|
154 |
"id": "oIACOAhDW5ow"
|
155 |
},
|
156 |
"outputs": [],
|
157 |
"source": [
|
158 |
"!accelerate launch -m lm_eval \\\n",
|
159 |
"--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,parallelize=True \\\n",
|
160 |
+
"--tasks $TASKS \\\n",
|
161 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
162 |
"--batch_size 16\n",
|
163 |
"#--limit 10 \\"
|
164 |
]
|
165 |
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"source": [
|
169 |
+
"hf_upload_folder(BASE_FOLDER)"
|
170 |
+
],
|
171 |
+
"metadata": {
|
172 |
+
"id": "eIUOqu5sHfkM"
|
173 |
+
},
|
174 |
+
"execution_count": null,
|
175 |
+
"outputs": []
|
176 |
+
},
|
177 |
{
|
178 |
"cell_type": "code",
|
179 |
"execution_count": null,
|
180 |
"metadata": {
|
181 |
+
"colab": {
|
182 |
+
"background_save": true
|
183 |
+
},
|
184 |
"id": "cFFYPzBIYGf7"
|
185 |
},
|
186 |
"outputs": [],
|
187 |
"source": [
|
188 |
"!accelerate launch -m lm_eval \\\n",
|
189 |
"--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,parallelize=True \\\n",
|
190 |
+
"--tasks $TASKS \\\n",
|
191 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
192 |
"--batch_size 16\n",
|
193 |
"#--limit 10 \\"
|
194 |
]
|
195 |
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"source": [
|
199 |
+
"hf_upload_folder(BASE_FOLDER)"
|
200 |
+
],
|
201 |
+
"metadata": {
|
202 |
+
"id": "xsL82Q4SHgMn"
|
203 |
+
},
|
204 |
+
"execution_count": null,
|
205 |
+
"outputs": []
|
206 |
+
},
|
207 |
{
|
208 |
"cell_type": "markdown",
|
209 |
"metadata": {
|
|
|
215 |
},
|
216 |
{
|
217 |
"cell_type": "code",
|
218 |
+
"execution_count": null,
|
219 |
+
"metadata": {
|
220 |
+
"colab": {
|
221 |
+
"background_save": true
|
222 |
+
},
|
223 |
+
"id": "ilu9_ulWTy3p"
|
224 |
+
},
|
225 |
+
"outputs": [],
|
226 |
"source": [
|
227 |
"!accelerate launch -m lm_eval \\\n",
|
228 |
"--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,parallelize=True \\\n",
|
229 |
+
"--tasks $TASKS \\\n",
|
230 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
231 |
"--batch_size 16\n",
|
232 |
"#--limit 10 \\"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"source": [
|
238 |
+
"hf_upload_folder(BASE_FOLDER)"
|
239 |
],
|
240 |
"metadata": {
|
241 |
+
"id": "jE5r8gVDHhAz"
|
242 |
},
|
243 |
"execution_count": null,
|
244 |
"outputs": []
|
|
|
251 |
},
|
252 |
"outputs": [],
|
253 |
"source": [
|
254 |
+
"!accelerate launch --multi_gpu --num_processes 4 -m lm_eval \\\n",
|
255 |
+
"--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1 \\\n",
|
256 |
+
"--tasks $TASKS \\\n",
|
257 |
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
258 |
+
"--batch_size 8\n",
|
259 |
"#--limit 10 \\"
|
260 |
]
|
261 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
{
|
263 |
"cell_type": "code",
|
264 |
+
"execution_count": null,
|
|
|
|
|
265 |
"metadata": {
|
266 |
"id": "mGGdqBNBzFYL"
|
267 |
},
|
268 |
+
"outputs": [],
|
269 |
+
"source": [
|
270 |
+
"hf_upload_folder(BASE_FOLDER)"
|
271 |
+
]
|
272 |
}
|
273 |
],
|
274 |
"metadata": {
|
275 |
"accelerator": "GPU",
|
276 |
"colab": {
|
277 |
+
"gpuType": "L4",
|
278 |
+
"machine_shape": "hm",
|
279 |
+
"provenance": []
|
280 |
},
|
281 |
"kernelspec": {
|
282 |
"display_name": "Python 3",
|
llm_metaeval_eval_harness_pub.ipynb
CHANGED
@@ -4,7 +4,8 @@
|
|
4 |
"metadata": {
|
5 |
"colab": {
|
6 |
"provenance": [],
|
7 |
-
"gpuType": "
|
|
|
8 |
},
|
9 |
"kernelspec": {
|
10 |
"name": "python3",
|
@@ -39,11 +40,42 @@
|
|
39 |
{
|
40 |
"cell_type": "code",
|
41 |
"source": [
|
42 |
-
"from
|
43 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
],
|
45 |
"metadata": {
|
46 |
-
"id": "
|
47 |
},
|
48 |
"execution_count": null,
|
49 |
"outputs": []
|
@@ -112,35 +144,15 @@
|
|
112 |
" .replace('__options__',templace_choices)\n",
|
113 |
" .replace('__dataset_name__',dataset_name).replace('__task_name__',task_name)\n",
|
114 |
" )\n",
|
115 |
-
"
|
116 |
-
" f.write(template)\n",
|
117 |
"\n",
|
118 |
-
"','.join(tasks)"
|
119 |
],
|
120 |
"metadata": {
|
121 |
-
"id": "xP0cC_sHih7C"
|
122 |
-
"colab": {
|
123 |
-
"base_uri": "https://localhost:8080/",
|
124 |
-
"height": 35
|
125 |
-
},
|
126 |
-
"outputId": "fcf3ed9e-1422-47f3-e234-016435c8b212"
|
127 |
},
|
128 |
-
"execution_count":
|
129 |
-
"outputs": [
|
130 |
-
{
|
131 |
-
"output_type": "execute_result",
|
132 |
-
"data": {
|
133 |
-
"text/plain": [
|
134 |
-
"'pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14'"
|
135 |
-
],
|
136 |
-
"application/vnd.google.colaboratory.intrinsic+json": {
|
137 |
-
"type": "string"
|
138 |
-
}
|
139 |
-
},
|
140 |
-
"metadata": {},
|
141 |
-
"execution_count": 1
|
142 |
-
}
|
143 |
-
]
|
144 |
},
|
145 |
{
|
146 |
"cell_type": "markdown",
|
@@ -154,18 +166,14 @@
|
|
154 |
{
|
155 |
"cell_type": "code",
|
156 |
"source": [
|
157 |
-
"!
|
158 |
-
"
|
159 |
-
"
|
160 |
-
"
|
161 |
-
"
|
162 |
-
" --use_cache cache \\\n",
|
163 |
-
" --device cuda:0 \\\n",
|
164 |
-
" --log_samples\n",
|
165 |
-
" # --limit 10\n"
|
166 |
],
|
167 |
"metadata": {
|
168 |
-
"id": "
|
169 |
},
|
170 |
"execution_count": null,
|
171 |
"outputs": []
|
@@ -173,15 +181,22 @@
|
|
173 |
{
|
174 |
"cell_type": "code",
|
175 |
"source": [
|
176 |
-
"
|
177 |
-
|
178 |
-
|
179 |
-
"
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
],
|
186 |
"metadata": {
|
187 |
"id": "oIACOAhDW5ow"
|
@@ -192,15 +207,22 @@
|
|
192 |
{
|
193 |
"cell_type": "code",
|
194 |
"source": [
|
195 |
-
"
|
196 |
-
|
197 |
-
|
198 |
-
"
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
],
|
205 |
"metadata": {
|
206 |
"id": "1Nxw4WNxZUyb"
|
@@ -211,18 +233,10 @@
|
|
211 |
{
|
212 |
"cell_type": "code",
|
213 |
"source": [
|
214 |
-
"
|
215 |
-
" --model_args pretrained=meta-llama/Meta-Llama-3-8B \\\n",
|
216 |
-
" --include_path ./ \\\n",
|
217 |
-
" --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
|
218 |
-
" --output output/pub/ \\\n",
|
219 |
-
" --use_cache cache \\\n",
|
220 |
-
" --device cuda:0 \\\n",
|
221 |
-
" --log_samples\n",
|
222 |
-
" # --limit 10"
|
223 |
],
|
224 |
"metadata": {
|
225 |
-
"id": "
|
226 |
},
|
227 |
"execution_count": null,
|
228 |
"outputs": []
|
@@ -239,18 +253,60 @@
|
|
239 |
{
|
240 |
"cell_type": "code",
|
241 |
"source": [
|
242 |
-
"!
|
243 |
-
"
|
244 |
-
"
|
245 |
-
"
|
246 |
-
"
|
247 |
-
|
248 |
-
|
249 |
-
"
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
],
|
252 |
"metadata": {
|
253 |
-
"id": "
|
254 |
},
|
255 |
"execution_count": null,
|
256 |
"outputs": []
|
|
|
4 |
"metadata": {
|
5 |
"colab": {
|
6 |
"provenance": [],
|
7 |
+
"gpuType": "L4",
|
8 |
+
"machine_shape": "hm"
|
9 |
},
|
10 |
"kernelspec": {
|
11 |
"name": "python3",
|
|
|
40 |
{
|
41 |
"cell_type": "code",
|
42 |
"source": [
|
43 |
+
"from datetime import datetime\n",
|
44 |
+
"import os\n",
|
45 |
+
"from huggingface_hub import login, upload_folder\n",
|
46 |
+
"from google.colab import userdata\n",
|
47 |
+
"import shutil\n",
|
48 |
+
"\n",
|
49 |
+
"HF_TOKEN = userdata.get('HF_TOKEN')\n",
|
50 |
+
"login(HF_TOKEN, True)\n",
|
51 |
+
"BASE_DATASET='pub'\n",
|
52 |
+
"REPO_ID='flunardelli/llm-metaeval'\n",
|
53 |
+
"BASE_FOLDER=f\"/content/{BASE_DATASET}/\"#{datetime.now().strftime('%Y-%m-%dT%H-%M-%S')}\n",
|
54 |
+
"OUTPUT_FOLDER=os.path.join(BASE_FOLDER,'output')\n",
|
55 |
+
"TASK_FOLDER=os.path.join(BASE_FOLDER,'tasks')\n",
|
56 |
+
"#shutil.rmtree(BASE_FOLDER)\n",
|
57 |
+
"os.makedirs(OUTPUT_FOLDER)\n",
|
58 |
+
"os.makedirs(TASK_FOLDER)\n",
|
59 |
+
"os.environ['HF_TOKEN'] = HF_TOKEN\n",
|
60 |
+
"os.environ['OUTPUT_FOLDER'] = OUTPUT_FOLDER\n",
|
61 |
+
"os.environ['TASK_FOLDER'] = TASK_FOLDER\n",
|
62 |
+
"\n",
|
63 |
+
"def hf_upload_folder(folder_path):\n",
|
64 |
+
" upload_folder(\n",
|
65 |
+
" folder_path=folder_path,\n",
|
66 |
+
" path_in_repo=\"evals/\",\n",
|
67 |
+
" repo_id=REPO_ID,\n",
|
68 |
+
" token=HF_TOKEN,\n",
|
69 |
+
" repo_type=\"dataset\"\n",
|
70 |
+
" )\n",
|
71 |
+
"\n",
|
72 |
+
"def create_task(content, filename):\n",
|
73 |
+
" filename_path = os.path.join(TASK_FOLDER,filename)\n",
|
74 |
+
" with open(filename_path, \"w\") as f:\n",
|
75 |
+
" f.write(content)"
|
76 |
],
|
77 |
"metadata": {
|
78 |
+
"id": "IHxFvAC4eSnW"
|
79 |
},
|
80 |
"execution_count": null,
|
81 |
"outputs": []
|
|
|
144 |
" .replace('__options__',templace_choices)\n",
|
145 |
" .replace('__dataset_name__',dataset_name).replace('__task_name__',task_name)\n",
|
146 |
" )\n",
|
147 |
+
" create_task(template, f\"pub_{dataset_name}.yaml\")\n",
|
|
|
148 |
"\n",
|
149 |
+
"os.environ['TASKS'] = ','.join(tasks)"
|
150 |
],
|
151 |
"metadata": {
|
152 |
+
"id": "xP0cC_sHih7C"
|
|
|
|
|
|
|
|
|
|
|
153 |
},
|
154 |
+
"execution_count": null,
|
155 |
+
"outputs": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
},
|
157 |
{
|
158 |
"cell_type": "markdown",
|
|
|
166 |
{
|
167 |
"cell_type": "code",
|
168 |
"source": [
|
169 |
+
"!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
|
170 |
+
"--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,parallelize=True \\\n",
|
171 |
+
"--tasks $i \\\n",
|
172 |
+
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
173 |
+
"--batch_size 8; done"
|
|
|
|
|
|
|
|
|
174 |
],
|
175 |
"metadata": {
|
176 |
+
"id": "NOwy6ZlY3Mw7"
|
177 |
},
|
178 |
"execution_count": null,
|
179 |
"outputs": []
|
|
|
181 |
{
|
182 |
"cell_type": "code",
|
183 |
"source": [
|
184 |
+
"hf_upload_folder(BASE_FOLDER)"
|
185 |
+
],
|
186 |
+
"metadata": {
|
187 |
+
"id": "v-7drt76r9wG"
|
188 |
+
},
|
189 |
+
"execution_count": null,
|
190 |
+
"outputs": []
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"source": [
|
195 |
+
"!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
|
196 |
+
"--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,parallelize=True \\\n",
|
197 |
+
"--tasks $i \\\n",
|
198 |
+
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
199 |
+
"--batch_size 8; done"
|
200 |
],
|
201 |
"metadata": {
|
202 |
"id": "oIACOAhDW5ow"
|
|
|
207 |
{
|
208 |
"cell_type": "code",
|
209 |
"source": [
|
210 |
+
"hf_upload_folder(BASE_FOLDER)"
|
211 |
+
],
|
212 |
+
"metadata": {
|
213 |
+
"id": "XowpCSOHr-qr"
|
214 |
+
},
|
215 |
+
"execution_count": null,
|
216 |
+
"outputs": []
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"source": [
|
221 |
+
"!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
|
222 |
+
"--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,parallelize=True \\\n",
|
223 |
+
"--tasks $i \\\n",
|
224 |
+
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
225 |
+
"--batch_size 8; done"
|
226 |
],
|
227 |
"metadata": {
|
228 |
"id": "1Nxw4WNxZUyb"
|
|
|
233 |
{
|
234 |
"cell_type": "code",
|
235 |
"source": [
|
236 |
+
"hf_upload_folder(BASE_FOLDER)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
],
|
238 |
"metadata": {
|
239 |
+
"id": "aNx_r4ZBr_ZW"
|
240 |
},
|
241 |
"execution_count": null,
|
242 |
"outputs": []
|
|
|
253 |
{
|
254 |
"cell_type": "code",
|
255 |
"source": [
|
256 |
+
"!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
|
257 |
+
"--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,parallelize=True \\\n",
|
258 |
+
"--tasks $i \\\n",
|
259 |
+
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
260 |
+
"--batch_size 8; done"
|
261 |
+
],
|
262 |
+
"metadata": {
|
263 |
+
"id": "E3dBWV1V9C-O"
|
264 |
+
},
|
265 |
+
"execution_count": null,
|
266 |
+
"outputs": []
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"cell_type": "code",
|
270 |
+
"source": [
|
271 |
+
"hf_upload_folder(BASE_FOLDER)"
|
272 |
+
],
|
273 |
+
"metadata": {
|
274 |
+
"id": "NcGYz2g7sKe7"
|
275 |
+
},
|
276 |
+
"execution_count": null,
|
277 |
+
"outputs": []
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"source": [
|
282 |
+
"!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
|
283 |
+
"--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1,parallelize=True \\\n",
|
284 |
+
"--tasks $i \\\n",
|
285 |
+
"--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
|
286 |
+
"--batch_size 8; done"
|
287 |
+
],
|
288 |
+
"metadata": {
|
289 |
+
"id": "LPqTo2z29RKx"
|
290 |
+
},
|
291 |
+
"execution_count": null,
|
292 |
+
"outputs": []
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "markdown",
|
296 |
+
"source": [
|
297 |
+
"Save output results"
|
298 |
+
],
|
299 |
+
"metadata": {
|
300 |
+
"id": "U8qh9BEbgBy7"
|
301 |
+
}
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"cell_type": "code",
|
305 |
+
"source": [
|
306 |
+
"hf_upload_folder(BASE_FOLDER)"
|
307 |
],
|
308 |
"metadata": {
|
309 |
+
"id": "ZQl05b1rf83u"
|
310 |
},
|
311 |
"execution_count": null,
|
312 |
"outputs": []
|