flunardelli commited on
Commit
5d9d806
·
verified ·
1 Parent(s): 8e20010

Upload 2 files

Browse files
llm_metaeval_eval_harness_mmlu.ipynb CHANGED
@@ -34,7 +34,7 @@
34
  "from google.colab import userdata\n",
35
  "import shutil\n",
36
  "\n",
37
- "HF_TOKEN = userdata.get('HUGGING_FACE_WRITE_TOKEN')\n",
38
  "login(HF_TOKEN, True)\n",
39
  "BASE_DATASET='mmlu'\n",
40
  "REPO_ID='flunardelli/llm-metaeval'\n",
@@ -101,7 +101,8 @@
101
  " aggregation: mean\n",
102
  " higher_is_better: true\n",
103
  "\"\"\"\n",
104
- "create_task(YAML_mmlu_en_us_string, 'mmlu_en_us.yaml')\n"
 
105
  ]
106
  },
107
  {
@@ -117,50 +118,92 @@
117
  "cell_type": "code",
118
  "execution_count": null,
119
  "metadata": {
 
 
 
120
  "id": "IzP5nyP0Gwk8"
121
  },
122
  "outputs": [],
123
  "source": [
124
  "!accelerate launch -m lm_eval \\\n",
125
  "--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,parallelize=True \\\n",
126
- "--tasks mmlu_all \\\n",
127
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
128
  "--batch_size 16\n",
129
  "#--limit 10 \\"
130
  ]
131
  },
 
 
 
 
 
 
 
 
 
 
 
132
  {
133
  "cell_type": "code",
134
  "execution_count": null,
135
  "metadata": {
 
 
 
136
  "id": "oIACOAhDW5ow"
137
  },
138
  "outputs": [],
139
  "source": [
140
  "!accelerate launch -m lm_eval \\\n",
141
  "--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,parallelize=True \\\n",
142
- "--tasks mmlu_all \\\n",
143
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
144
  "--batch_size 16\n",
145
  "#--limit 10 \\"
146
  ]
147
  },
 
 
 
 
 
 
 
 
 
 
 
148
  {
149
  "cell_type": "code",
150
  "execution_count": null,
151
  "metadata": {
 
 
 
152
  "id": "cFFYPzBIYGf7"
153
  },
154
  "outputs": [],
155
  "source": [
156
  "!accelerate launch -m lm_eval \\\n",
157
  "--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,parallelize=True \\\n",
158
- "--tasks mmlu_all \\\n",
159
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
160
  "--batch_size 16\n",
161
  "#--limit 10 \\"
162
  ]
163
  },
 
 
 
 
 
 
 
 
 
 
 
164
  {
165
  "cell_type": "markdown",
166
  "metadata": {
@@ -172,16 +215,30 @@
172
  },
173
  {
174
  "cell_type": "code",
 
 
 
 
 
 
 
 
175
  "source": [
176
  "!accelerate launch -m lm_eval \\\n",
177
  "--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,parallelize=True \\\n",
178
- "--tasks mmlu_all \\\n",
179
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
180
  "--batch_size 16\n",
181
  "#--limit 10 \\"
 
 
 
 
 
 
182
  ],
183
  "metadata": {
184
- "id": "ilu9_ulWTy3p"
185
  },
186
  "execution_count": null,
187
  "outputs": []
@@ -194,41 +251,32 @@
194
  },
195
  "outputs": [],
196
  "source": [
197
- "!accelerate launch -m lm_eval \\\n",
198
- "--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1,parallelize=True \\\n",
199
- "--tasks mmlu_all \\\n",
200
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
201
- "--batch_size 16\n",
202
  "#--limit 10 \\"
203
  ]
204
  },
205
- {
206
- "cell_type": "markdown",
207
- "metadata": {
208
- "id": "ZUTPHnV0kMB1"
209
- },
210
- "source": [
211
- "Save output results"
212
- ]
213
- },
214
  {
215
  "cell_type": "code",
216
- "source": [
217
- "hf_upload_folder(BASE_FOLDER)"
218
- ],
219
  "metadata": {
220
  "id": "mGGdqBNBzFYL"
221
  },
222
- "execution_count": null,
223
- "outputs": []
 
 
224
  }
225
  ],
226
  "metadata": {
227
  "accelerator": "GPU",
228
  "colab": {
229
- "gpuType": "T4",
230
- "provenance": [],
231
- "machine_shape": "hm"
232
  },
233
  "kernelspec": {
234
  "display_name": "Python 3",
 
34
  "from google.colab import userdata\n",
35
  "import shutil\n",
36
  "\n",
37
+ "HF_TOKEN = userdata.get('HF_TOKEN')\n",
38
  "login(HF_TOKEN, True)\n",
39
  "BASE_DATASET='mmlu'\n",
40
  "REPO_ID='flunardelli/llm-metaeval'\n",
 
101
  " aggregation: mean\n",
102
  " higher_is_better: true\n",
103
  "\"\"\"\n",
104
+ "create_task(YAML_mmlu_en_us_string, 'mmlu_en_us.yaml')\n",
105
+ "os.environ['TASKS'] = 'mmlu_all'\n"
106
  ]
107
  },
108
  {
 
118
  "cell_type": "code",
119
  "execution_count": null,
120
  "metadata": {
121
+ "colab": {
122
+ "background_save": true
123
+ },
124
  "id": "IzP5nyP0Gwk8"
125
  },
126
  "outputs": [],
127
  "source": [
128
  "!accelerate launch -m lm_eval \\\n",
129
  "--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,parallelize=True \\\n",
130
+ "--tasks $TASKS \\\n",
131
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
132
  "--batch_size 16\n",
133
  "#--limit 10 \\"
134
  ]
135
  },
136
+ {
137
+ "cell_type": "code",
138
+ "source": [
139
+ "hf_upload_folder(BASE_FOLDER)"
140
+ ],
141
+ "metadata": {
142
+ "id": "uMoitxJkHerH"
143
+ },
144
+ "execution_count": null,
145
+ "outputs": []
146
+ },
147
  {
148
  "cell_type": "code",
149
  "execution_count": null,
150
  "metadata": {
151
+ "colab": {
152
+ "background_save": true
153
+ },
154
  "id": "oIACOAhDW5ow"
155
  },
156
  "outputs": [],
157
  "source": [
158
  "!accelerate launch -m lm_eval \\\n",
159
  "--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,parallelize=True \\\n",
160
+ "--tasks $TASKS \\\n",
161
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
162
  "--batch_size 16\n",
163
  "#--limit 10 \\"
164
  ]
165
  },
166
+ {
167
+ "cell_type": "code",
168
+ "source": [
169
+ "hf_upload_folder(BASE_FOLDER)"
170
+ ],
171
+ "metadata": {
172
+ "id": "eIUOqu5sHfkM"
173
+ },
174
+ "execution_count": null,
175
+ "outputs": []
176
+ },
177
  {
178
  "cell_type": "code",
179
  "execution_count": null,
180
  "metadata": {
181
+ "colab": {
182
+ "background_save": true
183
+ },
184
  "id": "cFFYPzBIYGf7"
185
  },
186
  "outputs": [],
187
  "source": [
188
  "!accelerate launch -m lm_eval \\\n",
189
  "--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,parallelize=True \\\n",
190
+ "--tasks $TASKS \\\n",
191
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
192
  "--batch_size 16\n",
193
  "#--limit 10 \\"
194
  ]
195
  },
196
+ {
197
+ "cell_type": "code",
198
+ "source": [
199
+ "hf_upload_folder(BASE_FOLDER)"
200
+ ],
201
+ "metadata": {
202
+ "id": "xsL82Q4SHgMn"
203
+ },
204
+ "execution_count": null,
205
+ "outputs": []
206
+ },
207
  {
208
  "cell_type": "markdown",
209
  "metadata": {
 
215
  },
216
  {
217
  "cell_type": "code",
218
+ "execution_count": null,
219
+ "metadata": {
220
+ "colab": {
221
+ "background_save": true
222
+ },
223
+ "id": "ilu9_ulWTy3p"
224
+ },
225
+ "outputs": [],
226
  "source": [
227
  "!accelerate launch -m lm_eval \\\n",
228
  "--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,parallelize=True \\\n",
229
+ "--tasks $TASKS \\\n",
230
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
231
  "--batch_size 16\n",
232
  "#--limit 10 \\"
233
+ ]
234
+ },
235
+ {
236
+ "cell_type": "code",
237
+ "source": [
238
+ "hf_upload_folder(BASE_FOLDER)"
239
  ],
240
  "metadata": {
241
+ "id": "jE5r8gVDHhAz"
242
  },
243
  "execution_count": null,
244
  "outputs": []
 
251
  },
252
  "outputs": [],
253
  "source": [
254
+ "!accelerate launch --multi_gpu --num_processes 4 -m lm_eval \\\n",
255
+ "--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1 \\\n",
256
+ "--tasks $TASKS \\\n",
257
  "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
258
+ "--batch_size 8\n",
259
  "#--limit 10 \\"
260
  ]
261
  },
 
 
 
 
 
 
 
 
 
262
  {
263
  "cell_type": "code",
264
+ "execution_count": null,
 
 
265
  "metadata": {
266
  "id": "mGGdqBNBzFYL"
267
  },
268
+ "outputs": [],
269
+ "source": [
270
+ "hf_upload_folder(BASE_FOLDER)"
271
+ ]
272
  }
273
  ],
274
  "metadata": {
275
  "accelerator": "GPU",
276
  "colab": {
277
+ "gpuType": "L4",
278
+ "machine_shape": "hm",
279
+ "provenance": []
280
  },
281
  "kernelspec": {
282
  "display_name": "Python 3",
llm_metaeval_eval_harness_pub.ipynb CHANGED
@@ -4,7 +4,8 @@
4
  "metadata": {
5
  "colab": {
6
  "provenance": [],
7
- "gpuType": "T4"
 
8
  },
9
  "kernelspec": {
10
  "name": "python3",
@@ -39,11 +40,42 @@
39
  {
40
  "cell_type": "code",
41
  "source": [
42
- "from huggingface_hub import notebook_login\n",
43
- "notebook_login()"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ],
45
  "metadata": {
46
- "id": "2I850FIsCVNw"
47
  },
48
  "execution_count": null,
49
  "outputs": []
@@ -112,35 +144,15 @@
112
  " .replace('__options__',templace_choices)\n",
113
  " .replace('__dataset_name__',dataset_name).replace('__task_name__',task_name)\n",
114
  " )\n",
115
- " with open(f\"pub_{dataset_name}.yaml\", \"w\") as f:\n",
116
- " f.write(template)\n",
117
  "\n",
118
- "','.join(tasks)"
119
  ],
120
  "metadata": {
121
- "id": "xP0cC_sHih7C",
122
- "colab": {
123
- "base_uri": "https://localhost:8080/",
124
- "height": 35
125
- },
126
- "outputId": "fcf3ed9e-1422-47f3-e234-016435c8b212"
127
  },
128
- "execution_count": 1,
129
- "outputs": [
130
- {
131
- "output_type": "execute_result",
132
- "data": {
133
- "text/plain": [
134
- "'pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14'"
135
- ],
136
- "application/vnd.google.colaboratory.intrinsic+json": {
137
- "type": "string"
138
- }
139
- },
140
- "metadata": {},
141
- "execution_count": 1
142
- }
143
- ]
144
  },
145
  {
146
  "cell_type": "markdown",
@@ -154,18 +166,14 @@
154
  {
155
  "cell_type": "code",
156
  "source": [
157
- "!lm_eval --model hf \\\n",
158
- " --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct \\\n",
159
- " --include_path ./ \\\n",
160
- " --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
161
- " --output output/pub/ \\\n",
162
- " --use_cache cache \\\n",
163
- " --device cuda:0 \\\n",
164
- " --log_samples\n",
165
- " # --limit 10\n"
166
  ],
167
  "metadata": {
168
- "id": "IzP5nyP0Gwk8"
169
  },
170
  "execution_count": null,
171
  "outputs": []
@@ -173,15 +181,22 @@
173
  {
174
  "cell_type": "code",
175
  "source": [
176
- "!lm_eval --model hf \\\n",
177
- " --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct \\\n",
178
- " --include_path ./ \\\n",
179
- " --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
180
- " --output output/pub/ \\\n",
181
- " --use_cache cache \\\n",
182
- " --device cuda:0 \\\n",
183
- " --log_samples\n",
184
- " # --limit 10"
 
 
 
 
 
 
 
185
  ],
186
  "metadata": {
187
  "id": "oIACOAhDW5ow"
@@ -192,15 +207,22 @@
192
  {
193
  "cell_type": "code",
194
  "source": [
195
- "!lm_eval --model hf \\\n",
196
- " --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1 \\\n",
197
- " --include_path ./ \\\n",
198
- " --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
199
- " --output output/pub/ \\\n",
200
- " --use_cache cache \\\n",
201
- " --device cuda:0 \\\n",
202
- " --log_samples\n",
203
- " # --limit 10"
 
 
 
 
 
 
 
204
  ],
205
  "metadata": {
206
  "id": "1Nxw4WNxZUyb"
@@ -211,18 +233,10 @@
211
  {
212
  "cell_type": "code",
213
  "source": [
214
- "!lm_eval --model hf \\\n",
215
- " --model_args pretrained=meta-llama/Meta-Llama-3-8B \\\n",
216
- " --include_path ./ \\\n",
217
- " --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
218
- " --output output/pub/ \\\n",
219
- " --use_cache cache \\\n",
220
- " --device cuda:0 \\\n",
221
- " --log_samples\n",
222
- " # --limit 10"
223
  ],
224
  "metadata": {
225
- "id": "cFFYPzBIYGf7"
226
  },
227
  "execution_count": null,
228
  "outputs": []
@@ -239,18 +253,60 @@
239
  {
240
  "cell_type": "code",
241
  "source": [
242
- "!lm_eval --model hf \\\n",
243
- " --model_args pretrained=mistralai/Mistral-7B-v0.1 \\\n",
244
- " --include_path ./ \\\n",
245
- " --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
246
- " --output output/pub/ \\\n",
247
- " --use_cache cache \\\n",
248
- " --device cuda:0 \\\n",
249
- " --log_samples\n",
250
- " # --limit 10"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
  ],
252
  "metadata": {
253
- "id": "3cHI2qxN2fJ0"
254
  },
255
  "execution_count": null,
256
  "outputs": []
 
4
  "metadata": {
5
  "colab": {
6
  "provenance": [],
7
+ "gpuType": "L4",
8
+ "machine_shape": "hm"
9
  },
10
  "kernelspec": {
11
  "name": "python3",
 
40
  {
41
  "cell_type": "code",
42
  "source": [
43
+ "from datetime import datetime\n",
44
+ "import os\n",
45
+ "from huggingface_hub import login, upload_folder\n",
46
+ "from google.colab import userdata\n",
47
+ "import shutil\n",
48
+ "\n",
49
+ "HF_TOKEN = userdata.get('HF_TOKEN')\n",
50
+ "login(HF_TOKEN, True)\n",
51
+ "BASE_DATASET='pub'\n",
52
+ "REPO_ID='flunardelli/llm-metaeval'\n",
53
+ "BASE_FOLDER=f\"/content/{BASE_DATASET}/\"#{datetime.now().strftime('%Y-%m-%dT%H-%M-%S')}\n",
54
+ "OUTPUT_FOLDER=os.path.join(BASE_FOLDER,'output')\n",
55
+ "TASK_FOLDER=os.path.join(BASE_FOLDER,'tasks')\n",
56
+ "#shutil.rmtree(BASE_FOLDER)\n",
57
+ "os.makedirs(OUTPUT_FOLDER)\n",
58
+ "os.makedirs(TASK_FOLDER)\n",
59
+ "os.environ['HF_TOKEN'] = HF_TOKEN\n",
60
+ "os.environ['OUTPUT_FOLDER'] = OUTPUT_FOLDER\n",
61
+ "os.environ['TASK_FOLDER'] = TASK_FOLDER\n",
62
+ "\n",
63
+ "def hf_upload_folder(folder_path):\n",
64
+ " upload_folder(\n",
65
+ " folder_path=folder_path,\n",
66
+ " path_in_repo=\"evals/\",\n",
67
+ " repo_id=REPO_ID,\n",
68
+ " token=HF_TOKEN,\n",
69
+ " repo_type=\"dataset\"\n",
70
+ " )\n",
71
+ "\n",
72
+ "def create_task(content, filename):\n",
73
+ " filename_path = os.path.join(TASK_FOLDER,filename)\n",
74
+ " with open(filename_path, \"w\") as f:\n",
75
+ " f.write(content)"
76
  ],
77
  "metadata": {
78
+ "id": "IHxFvAC4eSnW"
79
  },
80
  "execution_count": null,
81
  "outputs": []
 
144
  " .replace('__options__',templace_choices)\n",
145
  " .replace('__dataset_name__',dataset_name).replace('__task_name__',task_name)\n",
146
  " )\n",
147
+ " create_task(template, f\"pub_{dataset_name}.yaml\")\n",
 
148
  "\n",
149
+ "os.environ['TASKS'] = ','.join(tasks)"
150
  ],
151
  "metadata": {
152
+ "id": "xP0cC_sHih7C"
 
 
 
 
 
153
  },
154
+ "execution_count": null,
155
+ "outputs": []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  },
157
  {
158
  "cell_type": "markdown",
 
166
  {
167
  "cell_type": "code",
168
  "source": [
169
+ "!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
170
+ "--model hf --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct,parallelize=True \\\n",
171
+ "--tasks $i \\\n",
172
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
173
+ "--batch_size 8; done"
 
 
 
 
174
  ],
175
  "metadata": {
176
+ "id": "NOwy6ZlY3Mw7"
177
  },
178
  "execution_count": null,
179
  "outputs": []
 
181
  {
182
  "cell_type": "code",
183
  "source": [
184
+ "hf_upload_folder(BASE_FOLDER)"
185
+ ],
186
+ "metadata": {
187
+ "id": "v-7drt76r9wG"
188
+ },
189
+ "execution_count": null,
190
+ "outputs": []
191
+ },
192
+ {
193
+ "cell_type": "code",
194
+ "source": [
195
+ "!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
196
+ "--model hf --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct,parallelize=True \\\n",
197
+ "--tasks $i \\\n",
198
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
199
+ "--batch_size 8; done"
200
  ],
201
  "metadata": {
202
  "id": "oIACOAhDW5ow"
 
207
  {
208
  "cell_type": "code",
209
  "source": [
210
+ "hf_upload_folder(BASE_FOLDER)"
211
+ ],
212
+ "metadata": {
213
+ "id": "XowpCSOHr-qr"
214
+ },
215
+ "execution_count": null,
216
+ "outputs": []
217
+ },
218
+ {
219
+ "cell_type": "code",
220
+ "source": [
221
+ "!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
222
+ "--model hf --model_args pretrained=meta-llama/Meta-Llama-3-8B,parallelize=True \\\n",
223
+ "--tasks $i \\\n",
224
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
225
+ "--batch_size 8; done"
226
  ],
227
  "metadata": {
228
  "id": "1Nxw4WNxZUyb"
 
233
  {
234
  "cell_type": "code",
235
  "source": [
236
+ "hf_upload_folder(BASE_FOLDER)"
 
 
 
 
 
 
 
 
237
  ],
238
  "metadata": {
239
+ "id": "aNx_r4ZBr_ZW"
240
  },
241
  "execution_count": null,
242
  "outputs": []
 
253
  {
254
  "cell_type": "code",
255
  "source": [
256
+ "!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
257
+ "--model hf --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1,parallelize=True \\\n",
258
+ "--tasks $i \\\n",
259
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
260
+ "--batch_size 8; done"
261
+ ],
262
+ "metadata": {
263
+ "id": "E3dBWV1V9C-O"
264
+ },
265
+ "execution_count": null,
266
+ "outputs": []
267
+ },
268
+ {
269
+ "cell_type": "code",
270
+ "source": [
271
+ "hf_upload_folder(BASE_FOLDER)"
272
+ ],
273
+ "metadata": {
274
+ "id": "NcGYz2g7sKe7"
275
+ },
276
+ "execution_count": null,
277
+ "outputs": []
278
+ },
279
+ {
280
+ "cell_type": "code",
281
+ "source": [
282
+ "!for i in $(echo $TASKS|tr ',' ' '); do accelerate launch -m lm_eval \\\n",
283
+ "--model hf --model_args pretrained=mistralai/Mixtral-8x22B-v0.1,parallelize=True \\\n",
284
+ "--tasks $i \\\n",
285
+ "--include_path $TASK_FOLDER/. --output $OUTPUT_FOLDER --use_cache cache --log_samples \\\n",
286
+ "--batch_size 8; done"
287
+ ],
288
+ "metadata": {
289
+ "id": "LPqTo2z29RKx"
290
+ },
291
+ "execution_count": null,
292
+ "outputs": []
293
+ },
294
+ {
295
+ "cell_type": "markdown",
296
+ "source": [
297
+ "Save output results"
298
+ ],
299
+ "metadata": {
300
+ "id": "U8qh9BEbgBy7"
301
+ }
302
+ },
303
+ {
304
+ "cell_type": "code",
305
+ "source": [
306
+ "hf_upload_folder(BASE_FOLDER)"
307
  ],
308
  "metadata": {
309
+ "id": "ZQl05b1rf83u"
310
  },
311
  "execution_count": null,
312
  "outputs": []