Commit
·
c607184
1
Parent(s):
bdc6993
initial notebooks
Browse files
llm_eval_harness_GPU_version.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
llm_metaeval_eval_harness_mmlu.ipynb
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"source": [
|
22 |
+
"Initial setup"
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "U8RTc2PmnX-v"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"source": [
|
31 |
+
"!pip install -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt"
|
32 |
+
],
|
33 |
+
"metadata": {
|
34 |
+
"id": "kGW7vfRkrqHe"
|
35 |
+
},
|
36 |
+
"execution_count": null,
|
37 |
+
"outputs": []
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"source": [
|
42 |
+
"from huggingface_hub import notebook_login\n",
|
43 |
+
"notebook_login()"
|
44 |
+
],
|
45 |
+
"metadata": {
|
46 |
+
"id": "2I850FIsCVNw"
|
47 |
+
},
|
48 |
+
"execution_count": null,
|
49 |
+
"outputs": []
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "markdown",
|
53 |
+
"source": [
|
54 |
+
"Create task for MMLU all datasets"
|
55 |
+
],
|
56 |
+
"metadata": {
|
57 |
+
"id": "Jd2JwKZaPkNS"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"source": [
|
63 |
+
"YAML_mmlu_en_us_string = \"\"\"\n",
|
64 |
+
"task: mmlu_all\n",
|
65 |
+
"dataset_path: cais/mmlu\n",
|
66 |
+
"dataset_name: all\n",
|
67 |
+
"description: \"MMLU dataset in English\"\n",
|
68 |
+
"test_split: test\n",
|
69 |
+
"fewshot_split: dev\n",
|
70 |
+
"fewshot_config:\n",
|
71 |
+
" sampler: first_n\n",
|
72 |
+
"output_type: multiple_choice\n",
|
73 |
+
"doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
|
74 |
+
"doc_to_choice: [\"A\", \"B\", \"C\", \"D\"]\n",
|
75 |
+
"doc_to_target: answer\n",
|
76 |
+
"metric_list:\n",
|
77 |
+
" - metric: acc\n",
|
78 |
+
" aggregation: mean\n",
|
79 |
+
" higher_is_better: true\n",
|
80 |
+
" - metric: acc_norm\n",
|
81 |
+
" aggregation: mean\n",
|
82 |
+
" higher_is_better: true\n",
|
83 |
+
"\"\"\"\n",
|
84 |
+
"with open(\"mmlu_en_us.yaml\", \"w\") as f:\n",
|
85 |
+
" f.write(YAML_mmlu_en_us_string)"
|
86 |
+
],
|
87 |
+
"metadata": {
|
88 |
+
"id": "xP0cC_sHih7C"
|
89 |
+
},
|
90 |
+
"execution_count": null,
|
91 |
+
"outputs": []
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "markdown",
|
95 |
+
"source": [
|
96 |
+
"Llama Models"
|
97 |
+
],
|
98 |
+
"metadata": {
|
99 |
+
"id": "mJjo_A5tP-Td"
|
100 |
+
}
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"source": [
|
105 |
+
"!lm_eval --model hf \\\n",
|
106 |
+
" --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct \\\n",
|
107 |
+
" --include_path ./ \\\n",
|
108 |
+
" --tasks mmlu_all \\\n",
|
109 |
+
" --output output/mmlu/ \\\n",
|
110 |
+
" --use_cache cache \\\n",
|
111 |
+
" --device cuda:0 \\\n",
|
112 |
+
" --log_samples\n",
|
113 |
+
" # --limit 10\n"
|
114 |
+
],
|
115 |
+
"metadata": {
|
116 |
+
"id": "IzP5nyP0Gwk8"
|
117 |
+
},
|
118 |
+
"execution_count": null,
|
119 |
+
"outputs": []
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"source": [
|
124 |
+
"!lm_eval --model hf \\\n",
|
125 |
+
" --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct \\\n",
|
126 |
+
" --include_path ./ \\\n",
|
127 |
+
" --tasks mmlu_all \\\n",
|
128 |
+
" --output output/mmlu/ \\\n",
|
129 |
+
" --use_cache cache \\\n",
|
130 |
+
" --device cuda:0 \\\n",
|
131 |
+
" --log_samples\n",
|
132 |
+
" # --limit 10"
|
133 |
+
],
|
134 |
+
"metadata": {
|
135 |
+
"id": "oIACOAhDW5ow"
|
136 |
+
},
|
137 |
+
"execution_count": null,
|
138 |
+
"outputs": []
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"source": [
|
143 |
+
"!lm_eval --model hf \\\n",
|
144 |
+
" --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1 \\\n",
|
145 |
+
" --include_path ./ \\\n",
|
146 |
+
" --tasks mmlu_all \\\n",
|
147 |
+
" --output output/mmlu/ \\\n",
|
148 |
+
" --use_cache cache \\\n",
|
149 |
+
" --device cuda:0 \\\n",
|
150 |
+
" --log_samples\n",
|
151 |
+
" # --limit 10"
|
152 |
+
],
|
153 |
+
"metadata": {
|
154 |
+
"id": "1Nxw4WNxZUyb"
|
155 |
+
},
|
156 |
+
"execution_count": null,
|
157 |
+
"outputs": []
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"source": [
|
162 |
+
"!lm_eval --model hf \\\n",
|
163 |
+
" --model_args pretrained=meta-llama/Meta-Llama-3-8B \\\n",
|
164 |
+
" --include_path ./ \\\n",
|
165 |
+
" --tasks mmlu_all \\\n",
|
166 |
+
" --output output/mmlu/ \\\n",
|
167 |
+
" --use_cache cache \\\n",
|
168 |
+
" --device cuda:0 \\\n",
|
169 |
+
" --log_samples\n",
|
170 |
+
" # --limit 10"
|
171 |
+
],
|
172 |
+
"metadata": {
|
173 |
+
"id": "cFFYPzBIYGf7"
|
174 |
+
},
|
175 |
+
"execution_count": null,
|
176 |
+
"outputs": []
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "markdown",
|
180 |
+
"source": [
|
181 |
+
"Mistral Models"
|
182 |
+
],
|
183 |
+
"metadata": {
|
184 |
+
"id": "1fEX-49hQ-Be"
|
185 |
+
}
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "code",
|
189 |
+
"source": [
|
190 |
+
"!lm_eval --model hf \\\n",
|
191 |
+
" --model_args pretrained=mistralai/Mistral-7B-v0.1 \\\n",
|
192 |
+
" --include_path ./ \\\n",
|
193 |
+
" --tasks mmlu_all \\\n",
|
194 |
+
" --output output/mmlu/ \\\n",
|
195 |
+
" --use_cache cache \\\n",
|
196 |
+
" --device cuda:0 \\\n",
|
197 |
+
" --log_samples\n",
|
198 |
+
" # --limit 10"
|
199 |
+
],
|
200 |
+
"metadata": {
|
201 |
+
"id": "3cHI2qxN2fJ0"
|
202 |
+
},
|
203 |
+
"execution_count": null,
|
204 |
+
"outputs": []
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "markdown",
|
208 |
+
"source": [],
|
209 |
+
"metadata": {
|
210 |
+
"id": "ZUTPHnV0kMB1"
|
211 |
+
}
|
212 |
+
}
|
213 |
+
]
|
214 |
+
}
|
llm_metaeval_eval_harness_pub.ipynb
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"source": [
|
22 |
+
"Initial setup"
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "U8RTc2PmnX-v"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"source": [
|
31 |
+
"!pip install -r https://huggingface.co/flunardelli/llm-metaeval/raw/main/requirements.txt"
|
32 |
+
],
|
33 |
+
"metadata": {
|
34 |
+
"id": "kGW7vfRkrqHe"
|
35 |
+
},
|
36 |
+
"execution_count": null,
|
37 |
+
"outputs": []
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"cell_type": "code",
|
41 |
+
"source": [
|
42 |
+
"from huggingface_hub import notebook_login\n",
|
43 |
+
"notebook_login()"
|
44 |
+
],
|
45 |
+
"metadata": {
|
46 |
+
"id": "2I850FIsCVNw"
|
47 |
+
},
|
48 |
+
"execution_count": null,
|
49 |
+
"outputs": []
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "markdown",
|
53 |
+
"source": [
|
54 |
+
"Create task for PUB all datasets"
|
55 |
+
],
|
56 |
+
"metadata": {
|
57 |
+
"id": "Jd2JwKZaPkNS"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"source": [
|
63 |
+
"YAML_template_pub_tasks = [\n",
|
64 |
+
" (\"task_1\", 2),\n",
|
65 |
+
" (\"task_2\", 5),\n",
|
66 |
+
" (\"task_3\", 5),\n",
|
67 |
+
" (\"task_4\", 3),\n",
|
68 |
+
" (\"task_5\", 2),\n",
|
69 |
+
" (\"task_6\", 2),\n",
|
70 |
+
" (\"task_7\", 2),\n",
|
71 |
+
" (\"task_8\", 2),\n",
|
72 |
+
" (\"task_9\", 2),\n",
|
73 |
+
" (\"task_10\", 3),\n",
|
74 |
+
" (\"task_11\", 3),\n",
|
75 |
+
" (\"task_12\", 2),\n",
|
76 |
+
" (\"task_13\", 2),\n",
|
77 |
+
" (\"task_14\", 4)\n",
|
78 |
+
"]\n",
|
79 |
+
"\n",
|
80 |
+
"default_doc_to_text = \"{{pretext.strip()}}\\n {{options[0]}}\\n{{options[1]}}\\\\n{{options[2]}}\\\\n{{options[3]}}\\\\n{{options[4]}}\\\\nAnswer:\"\n",
|
81 |
+
"\n",
|
82 |
+
"\n",
|
83 |
+
"YAML_template_pub_base = \"\"\"\n",
|
84 |
+
"task: __task_name__\n",
|
85 |
+
"dataset_path: flunardelli/PUB\n",
|
86 |
+
"dataset_name: __dataset_name__\n",
|
87 |
+
"description: \"PUB\"\n",
|
88 |
+
"test_split: test\n",
|
89 |
+
"fewshot_split: test\n",
|
90 |
+
"fewshot_config:\n",
|
91 |
+
" sampler: first_n\n",
|
92 |
+
"num_fewshot: 10\n",
|
93 |
+
"output_type: multiple_choice\n",
|
94 |
+
"doc_to_text: \"{{pretext.strip()}}\\n Options:\\n__options__\\nAnswer:\"\n",
|
95 |
+
"doc_to_choice: \"{{options}}\"\n",
|
96 |
+
"doc_to_target: \"correct answer\"\n",
|
97 |
+
"metric_list:\n",
|
98 |
+
" - metric: acc\n",
|
99 |
+
" aggregation: mean\n",
|
100 |
+
" higher_is_better: true\n",
|
101 |
+
" - metric: acc_norm\n",
|
102 |
+
" aggregation: mean\n",
|
103 |
+
" higher_is_better: true\n",
|
104 |
+
"\"\"\"\n",
|
105 |
+
"tasks = []\n",
|
106 |
+
"for t in YAML_template_pub_tasks:\n",
|
107 |
+
" dataset_name, num_choices = t\n",
|
108 |
+
" task_name = f\"pub_{dataset_name}\"\n",
|
109 |
+
" tasks.append(task_name)\n",
|
110 |
+
" templace_choices = '\\n'.join([\"{{options[__i__]}}\".replace('__i__',str(i)) for i in range(num_choices)])\n",
|
111 |
+
" template = (YAML_template_pub_base\n",
|
112 |
+
" .replace('__options__',templace_choices)\n",
|
113 |
+
" .replace('__dataset_name__',dataset_name).replace('__task_name__',task_name)\n",
|
114 |
+
" )\n",
|
115 |
+
" with open(f\"pub_{dataset_name}.yaml\", \"w\") as f:\n",
|
116 |
+
" f.write(template)\n",
|
117 |
+
"\n",
|
118 |
+
"','.join(tasks)"
|
119 |
+
],
|
120 |
+
"metadata": {
|
121 |
+
"id": "xP0cC_sHih7C",
|
122 |
+
"colab": {
|
123 |
+
"base_uri": "https://localhost:8080/",
|
124 |
+
"height": 35
|
125 |
+
},
|
126 |
+
"outputId": "fcf3ed9e-1422-47f3-e234-016435c8b212"
|
127 |
+
},
|
128 |
+
"execution_count": 1,
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"output_type": "execute_result",
|
132 |
+
"data": {
|
133 |
+
"text/plain": [
|
134 |
+
"'pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14'"
|
135 |
+
],
|
136 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
137 |
+
"type": "string"
|
138 |
+
}
|
139 |
+
},
|
140 |
+
"metadata": {},
|
141 |
+
"execution_count": 1
|
142 |
+
}
|
143 |
+
]
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"cell_type": "markdown",
|
147 |
+
"source": [
|
148 |
+
"Llama Models"
|
149 |
+
],
|
150 |
+
"metadata": {
|
151 |
+
"id": "mJjo_A5tP-Td"
|
152 |
+
}
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "code",
|
156 |
+
"source": [
|
157 |
+
"!lm_eval --model hf \\\n",
|
158 |
+
" --model_args pretrained=meta-llama/Llama-3.2-1B-Instruct \\\n",
|
159 |
+
" --include_path ./ \\\n",
|
160 |
+
" --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
|
161 |
+
" --output output/pub/ \\\n",
|
162 |
+
" --use_cache cache \\\n",
|
163 |
+
" --device cuda:0 \\\n",
|
164 |
+
" --log_samples\n",
|
165 |
+
" # --limit 10\n"
|
166 |
+
],
|
167 |
+
"metadata": {
|
168 |
+
"id": "IzP5nyP0Gwk8"
|
169 |
+
},
|
170 |
+
"execution_count": null,
|
171 |
+
"outputs": []
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"source": [
|
176 |
+
"!lm_eval --model hf \\\n",
|
177 |
+
" --model_args pretrained=meta-llama/Llama-3.2-3B-Instruct \\\n",
|
178 |
+
" --include_path ./ \\\n",
|
179 |
+
" --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
|
180 |
+
" --output output/pub/ \\\n",
|
181 |
+
" --use_cache cache \\\n",
|
182 |
+
" --device cuda:0 \\\n",
|
183 |
+
" --log_samples\n",
|
184 |
+
" # --limit 10"
|
185 |
+
],
|
186 |
+
"metadata": {
|
187 |
+
"id": "oIACOAhDW5ow"
|
188 |
+
},
|
189 |
+
"execution_count": null,
|
190 |
+
"outputs": []
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"source": [
|
195 |
+
"!lm_eval --model hf \\\n",
|
196 |
+
" --model_args pretrained=mistralai/Mixtral-8x7B-Instruct-v0.1 \\\n",
|
197 |
+
" --include_path ./ \\\n",
|
198 |
+
" --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
|
199 |
+
" --output output/pub/ \\\n",
|
200 |
+
" --use_cache cache \\\n",
|
201 |
+
" --device cuda:0 \\\n",
|
202 |
+
" --log_samples\n",
|
203 |
+
" # --limit 10"
|
204 |
+
],
|
205 |
+
"metadata": {
|
206 |
+
"id": "1Nxw4WNxZUyb"
|
207 |
+
},
|
208 |
+
"execution_count": null,
|
209 |
+
"outputs": []
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"source": [
|
214 |
+
"!lm_eval --model hf \\\n",
|
215 |
+
" --model_args pretrained=meta-llama/Meta-Llama-3-8B \\\n",
|
216 |
+
" --include_path ./ \\\n",
|
217 |
+
" --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
|
218 |
+
" --output output/pub/ \\\n",
|
219 |
+
" --use_cache cache \\\n",
|
220 |
+
" --device cuda:0 \\\n",
|
221 |
+
" --log_samples\n",
|
222 |
+
" # --limit 10"
|
223 |
+
],
|
224 |
+
"metadata": {
|
225 |
+
"id": "cFFYPzBIYGf7"
|
226 |
+
},
|
227 |
+
"execution_count": null,
|
228 |
+
"outputs": []
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"cell_type": "markdown",
|
232 |
+
"source": [
|
233 |
+
"Mistral Models"
|
234 |
+
],
|
235 |
+
"metadata": {
|
236 |
+
"id": "1fEX-49hQ-Be"
|
237 |
+
}
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"source": [
|
242 |
+
"!lm_eval --model hf \\\n",
|
243 |
+
" --model_args pretrained=mistralai/Mistral-7B-v0.1 \\\n",
|
244 |
+
" --include_path ./ \\\n",
|
245 |
+
" --tasks pub_task_1,pub_task_2,pub_task_3,pub_task_4,pub_task_5,pub_task_6,pub_task_7,pub_task_8,pub_task_9,pub_task_10,pub_task_11,pub_task_12,pub_task_13,pub_task_14 \\\n",
|
246 |
+
" --output output/pub/ \\\n",
|
247 |
+
" --use_cache cache \\\n",
|
248 |
+
" --device cuda:0 \\\n",
|
249 |
+
" --log_samples\n",
|
250 |
+
" # --limit 10"
|
251 |
+
],
|
252 |
+
"metadata": {
|
253 |
+
"id": "3cHI2qxN2fJ0"
|
254 |
+
},
|
255 |
+
"execution_count": null,
|
256 |
+
"outputs": []
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "markdown",
|
260 |
+
"source": [],
|
261 |
+
"metadata": {
|
262 |
+
"id": "ZUTPHnV0kMB1"
|
263 |
+
}
|
264 |
+
}
|
265 |
+
]
|
266 |
+
}
|