File size: 21,492 Bytes
3c1955e
 
 
bafc0de
c3426b7
3c1955e
9b58bb3
c4844cd
e92b03b
ce25f02
a112afa
 
bafc0de
5596b7b
 
0501ef0
c4844cd
bab5c7c
e0b72b6
bab5c7c
 
 
 
 
 
 
9b58bb3
bafc0de
 
 
 
 
 
 
 
 
3c1955e
9aeabfb
c4844cd
bafc0de
c4844cd
 
 
 
ce25f02
 
a112afa
 
bafc0de
c4844cd
 
0501ef0
c4844cd
bafc0de
e0b72b6
bab5c7c
bafc0de
bab5c7c
 
 
 
 
9b58bb3
bafc0de
 
 
 
 
 
 
 
 
d7580f1
b3847d7
c4844cd
 
 
 
b3847d7
 
ce25f02
 
a112afa
 
c4844cd
b3847d7
 
0501ef0
c4844cd
b3847d7
e0b72b6
b3847d7
 
 
 
 
 
 
c4844cd
bafc0de
 
 
 
 
 
 
 
 
b3847d7
3c1955e
c4844cd
 
 
 
3c1955e
5596b7b
ce25f02
 
a112afa
 
c4844cd
5596b7b
 
0501ef0
c4844cd
bab5c7c
e0b72b6
bab5c7c
 
 
 
 
 
 
9b58bb3
bafc0de
 
 
 
 
 
 
 
 
c4844cd
 
 
 
 
 
 
 
ce25f02
 
a112afa
 
c4844cd
 
 
0501ef0
c4844cd
bab5c7c
e0b72b6
bab5c7c
 
 
 
 
 
 
9b58bb3
bafc0de
 
 
 
 
 
 
 
 
bab5c7c
 
c4844cd
 
 
 
 
 
ce25f02
 
a112afa
 
c4844cd
 
 
0501ef0
c4844cd
bab5c7c
e0b72b6
bab5c7c
c4844cd
bab5c7c
 
 
 
c4844cd
 
bafc0de
 
 
 
 
 
 
 
 
c4844cd
 
 
 
 
 
 
 
ce25f02
 
a112afa
 
c4844cd
 
 
3be0909
c4844cd
 
e0b72b6
c4844cd
 
 
 
 
 
 
9b58bb3
bafc0de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce25f02
697a7b6
a112afa
 
bafc0de
 
 
0501ef0
bafc0de
 
e0b72b6
bafc0de
 
 
 
a112afa
bafc0de
 
a112afa
bafc0de
 
 
 
 
 
 
 
 
c411625
 
a112afa
 
c411625
 
 
 
a112afa
697a7b6
a112afa
 
c411625
 
 
0501ef0
c411625
a112afa
e0b72b6
c411625
 
 
 
a112afa
c411625
a112afa
 
c411625
 
 
 
 
 
 
 
 
d2793ed
 
 
 
 
 
697a7b6
d2793ed
 
697a7b6
d2793ed
 
 
697a7b6
d2793ed
3be0909
d2793ed
 
e0b72b6
d2793ed
e92b03b
697a7b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0501ef0
e92b03b
697a7b6
e0b72b6
697a7b6
d2793ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0b72b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0501ef0
e0b72b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bab5c7c
bafc0de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
[
    {
        "id": "Internal",
        "model_title": "AI Assistant",
        "model_file": "ggml-model-Q8_0.gguf",
        "model_url": "https://",
        "model_info_url": "https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B",
        "model_avatar": "ava0",
        "model_intention": "It's good for talking and casual writing. Most devices can run it well.",
        "model_license": "license_llama2.txt",
        "model_license_info": "Meta Llama 2 Community License Agreement",
        "model_license_url": "https://ai.meta.com/llama/license/",
        "model_description": "It is an AI assistant who can talk with you and help solve simple problems. It's based on a lite LLAMA2 model developed by Meta Inc.",
        "developer": "Meta",
        "developer_url": "https://ai.meta.com/llama/",
        "category": "Talk & Inference",
        "file_size": 1430,
        "context" : 2048,
        "max_context" : 2048,
        "temp" : 0.6,
        "prompt_format" : "<human>: {{prompt}}\n<bot>: ",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "llama",
        "n_batch" : 10,
        "template_name" : "HumanBot",
        "is_ready": true,
        "is_internal": true,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
    },
    {
         "id": "LiteLlama-460M-1T-Q8",
         "model_title": "LiteLlama",
         "model_file": "LiteLlama-460M-1T-Q8_0.gguf",
         "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true",
         "model_info_url": "https://huggingface.co/ahxt/LiteLlama-460M-1T",
         "model_avatar": "logo_litellama",
         "model_intention": "This is a 460 parameters' very small model for test purpose only",
         "model_license": "license_llama2.txt",
         "model_license_info": "Meta Llama 2 Community License Agreement",
         "model_license_url": "https://ai.meta.com/llama/license/",
         "model_description": "It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.",
         "developer": "Xiaotian Han from Texas A&M University",
         "developer_url": "https://huggingface.co/ahxt/LiteLlama-460M-1T",
         "category": "Test",
         "file_size": 493,
         "context" : 1024,
         "max_context" : 1024,
         "temp" : 0.6,
         "prompt_format" : "<human>: {{prompt}}\n<bot>:",
         "top_k" : 5,
         "top_p" : 0.9,
         "model_inference" : "llama",
         "n_batch" : 10,
         "template_name" : "TinyLlama",
         "is_ready": true,
         "is_internal": false,
         "use_metal": true,
         "mlock": false,
         "mmap": true,
         "repeat_last_n": 64,
         "repeat_penalty": 1.2,
         "add_bos_token": true,
         "add_eos_token": false,
         "parse_special_tokens": true
    },
    {
         "id": "tinyllama-1.1B-chat-Q8",
         "model_title": "TinyLlama-1.1B-chat",
         "model_file": "tinyllama-1.1B-chat-v1.0-Q8_0.gguf",
         "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true",
         "model_info_url": "https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
         "model_avatar": "logo_tinyllama",
         "model_intention": "It's good for question & answer.",
         "model_license": "license_llama2.txt",
         "model_license_info": "Meta Llama 2 Community License Agreement",
         "model_license_url": "https://ai.meta.com/llama/license/",
         "model_description": "The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.",
         "developer": "Zhang Peiyuan",
         "developer_url": "https://github.com/jzhang38/TinyLlama",
         "category": "Talk & Inference",
         "file_size": 1170,
         "context" : 4096,
         "max_context" : 4096,
         "temp" : 0.6,
         "prompt_format" : "<|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>",
         "top_k" : 5,
         "top_p" : 0.9,
         "model_inference" : "llama",
         "n_batch" : 10,
         "template_name" : "TinyLlama",
         "is_ready": true,
         "is_internal": false,
         "use_metal": true,
         "mlock": false,
         "mmap": true,
         "repeat_last_n": 64,
         "repeat_penalty": 1.2,
         "add_bos_token": true,
         "add_eos_token": false,
         "parse_special_tokens": true
    },
    {
        "id": "mistral-7b-instruct-v0.2-Q8",
        "model_title": "Mistral 7B v0.2",
        "model_file": "mistral-7b-instruct-v0.2.Q8_0.gguf",
        "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true",
        "model_info_url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
        "model_avatar": "logo_mistralai",
        "model_intention": "It's a 7B large model for Q&A purpose. But it requires a high-end device to run.",
        "model_license": "license_apache2.txt",
        "model_license_info": "APACHE LICENSE, VERSION 2.0",
        "model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
        "model_description": "The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.",
        "developer": "Mistral AI",
        "developer_url": "https://mistral.ai/",
        "category": "Best Q&A for latest devices",
        "file_size": 7695,
        "context" : 4096,
        "max_context" : 4096,
        "temp" : 0.6,
        "prompt_format" : "<s>[INST]{{prompt}}[/INST]</s>",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "llama",
        "n_batch" : 10,
        "template_name" : "Mistral",
        "is_ready": true,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   },
   {
        "id": "openchat-3.5-1210-Q8",
        "model_title": "OpenChat 3.5",
        "model_file": "mistral-7b-instruct-v0.2.Q8.gguf",
        "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true",
        "model_info_url": "https://huggingface.co/openchat/openchat_3.5",
        "model_avatar": "logo_openchat",
        "model_intention": "It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.",
        "model_license": "license_apache2.txt",
        "model_license_info": "APACHE LICENSE, VERSION 2.0",
        "model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
        "model_description": "OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.",
        "developer": "OpenChat Team",
        "developer_url": "https://openchat.team/",
        "category": "Best Q&A for latest devices",
        "file_size": 7695,
        "context" : 4096,
        "max_context" : 4096,
        "temp" : 0.6,
        "prompt_format" : "<s>[INST]{{prompt}}[/INST]</s>",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "llama",
        "n_batch" : 10,
        "template_name" : "Mistral",
        "is_ready": true,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   },
   {
        "id": "phi-2",
        "model_title": "Phi-2",
        "model_file": "phi-2.Q8_0.gguf",
        "model_url": "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true",
        "model_info_url": "https://huggingface.co/microsoft/phi-2",
        "model_avatar": "logo_phi",
        "model_intention": "It's a 2.7B model and is intended for QA, chat, and code purposes",
        "model_license": "license_mit.txt",
        "model_license_info": "The MIT License",
        "model_license_url": "https://opensource.org/license/mit",
        "model_description": "Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.",
        "developer": "Microsoft",
        "developer_url": "https://huggingface.co/microsoft/phi-2",
        "category": "Math Q&A",
        "file_size": 2960,
        "context" : 4096,
        "max_context" : 4096,
        "temp" : 0.6,
        "prompt_format" : "Instruct: {{prompt}}\nOutput:",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "llama",
        "n_batch" : 10,
        "template_name" : "PHI",
        "is_ready": true,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   },
   {
        "id": "yi-6b",
        "model_title": "Yi 6B Chat",
        "model_file": "yi-6b-chat-Q8_0.gguf",
        "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true",
        "model_info_url": "https://huggingface.co/01-ai/Yi-6B-Chat",
        "model_avatar": "logo_yi",
        "model_intention": "It's a 6B model and can understand English and Chinese. It's good for QA and Chat",
        "model_license": "license_apache2.txt",
        "model_license_info": "APACHE LICENSE, VERSION 2.0",
        "model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
        "model_description": "The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.",
        "developer": "01.AI",
        "developer_url": "https://01.ai/",
        "category": "Multilingual",
        "file_size": 6440,
        "context" : 200000,
        "max_context" : 200000,
        "temp" : 0.6,
        "prompt_format" : "<|im_start|>user\n<|im_end|>\n{{prompt}}\n<|im_start|>assistant\n",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "llama",
        "n_batch" : 10,
        "template_name" : "yi",
        "is_ready": true,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   },
   {
        "id": "gemma-2b",
        "model_title": "Google Gemma 2B",
        "model_file": "gemma-2b-it-q8_0.gguf",
        "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true",
        "model_info_url": "https://huggingface.co/google/gemma-2b",
        "model_avatar": "logo_google",
        "model_intention": "It's a 2B large model for Q&A purpose. But it requires a high-end device to run.",
        "model_license": "license_apache2.txt",
        "model_license_info": "APACHE LICENSE, VERSION 2.0",
        "model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
        "model_description": "Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).",
        "developer": "Google",
        "developer_url": "https://huggingface.co/google",
        "category": "Talk & Inference",
        "file_size": 2669,
        "context" : 8192,
        "max_context" : 8192,
        "temp" : 0.6,
        "prompt_format" : "<bos><start_of_turn>user\n{{prompt}}<end_of_turn>\n<start_of_turn>model\n",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "gemma",
        "n_batch" : 10,
        "template_name" : "gemma",
        "is_ready": false,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   },
   {
        "id": "starcoder2-3b",
        "model_title": "StarCoder2 3B",
        "model_file": "starcoder2-3b-instruct-gguf_Q8_0.gguf",
        "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true",
        "model_info_url": "https://huggingface.co/bigcode/starcoder2-3b",
        "model_avatar": "logo_starcoder",
        "model_intention": "The model is good at 17 programming languages. It can help you resolve programming requirements",
        "model_license": "license_apache2.txt",
        "model_license_info": "APACHE LICENSE, VERSION 2.0",
        "model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
        "model_description": "StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens",
        "developer": "Bigcode",
        "developer_url": "https://www.bigcode-project.org/",
        "category": "Programming Assistance",
        "file_size": 3220,
        "context" : 8192,
        "max_context" : 8192,
        "temp" : 0.6,
        "prompt_format" : "### Instruction\n{{prompt}}### Response\n",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "starcoder",
        "n_batch" : 10,
        "template_name" : "starcoder",
        "is_ready": false,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   },
   {
        "id": "chinese-tiny-llm-2b",
        "model_title": "Chinese Tiny LLM 2B",
        "model_file": "chinese-tiny-llm-2b-Q8_0.gguf",
        "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true",
        "model_info_url": "https://chinese-tiny-llm.github.io/",
        "model_avatar": "logo_mapai",
        "model_intention": "这是一个参数规模2B的中文模型,具有很好的中文理解和应答能力",
        "model_license": "license_apache2.txt",
        "model_license_info": "APACHE LICENSE, VERSION 2.0",
        "model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
        "model_description": "Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。",
        "developer": "Multimodal Art Projection",
        "developer_url": "https://m-a-p.ai/",
        "category": "Multilingual",
        "file_size": 2218,
        "context" : 4096,
        "max_context" : 4096,
        "temp" : 0.6,
        "prompt_format" : "<|im_start|>user\n{{prompt}}\n<|im_end|>\n<|im_start|>assistant\n",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "llama",
        "n_batch" : 10,
        "template_name" : "chatml",
        "is_ready": true,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   },
   {
        "id": "dolphin-2.8-mistral-7b-v02",
        "model_title": "Dophin 2.8 Mistralv02 7B",
        "model_file": "dolphin-2.8-mistral-7b-v02-Q2_K.gguf",
        "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true",
        "model_info_url": "https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02",
        "model_avatar": "logo_dolphin",
        "model_intention": "It's a uncensored and good skilled English modal best for high performance iPhone, iPad & Mac",
        "model_license": "license_apache2.txt",
        "model_license_info": "APACHE LICENSE, VERSION 2.0",
        "model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
        "model_description": "This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.",
        "developer": "Eric Hartford and Cognitive Computations",
        "developer_url": "https://erichartford.com/",
        "category": "Best Q&A for latest devices",
        "file_size": 2728,
        "context" : 16384,
        "max_context" : 16384,
        "temp" : 0.6,
        "prompt_format" : "<|im_start|>user\n{{prompt}}\n<|im_end|>\n<|im_start|>assistant\n",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "llama",
        "n_batch" : 10,
        "template_name" : "chatml",
        "is_ready": true,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   },
   {
        "id": "WizardLM-2-7B.Q3_K_M",
        "model_title": "WizardLM-2 7B",
        "model_file": "WizardLM-2-7B.Q3_K_M.gguf",
        "model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/WizardLM-2-7B.Q3_K_M.gguf?download=true",
        "model_info_url": "https://huggingface.co/MaziyarPanahi/WizardLM-2-7B-GGUF",
        "model_avatar": "logo_phi",
        "model_intention": "It's a state-of-the-art large language model with improved performance on complex chat, multilingual, reasoning and agent.",
        "model_license": "license_apache2.txt",
        "model_license_info": "APACHE LICENSE, VERSION 2.0",
        "model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
        "model_description": "The WizardLM-2 is one of the next generation state-of-the-art large language models, which have improved performance on complex chat, multilingual, reasoning and agent.",
        "developer": "Eric Hartford and Cognitive Computations",
        "developer_url": "https://huggingface.co/collections/microsoft/wizardlm-661d403f71e6c8257dbd598a",
        "category": "Best Q&A for latest devices",
        "file_size": 3519,
        "context" : 32768,
        "max_context" : 32768,
        "temp" : 0.6,
        "prompt_format" : "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. \nUSER: {{prompt}}\nASSISTANT: ",
        "top_k" : 5,
        "top_p" : 0.9,
        "model_inference" : "llama",
        "n_batch" : 10,
        "template_name" : "chatml",
        "is_ready": true,
        "is_internal": false,
        "use_metal": true,
        "mlock": false,
        "mmap": true,
        "repeat_last_n": 64,
        "repeat_penalty": 1.2,
        "add_bos_token": true,
        "add_eos_token": false,
        "parse_special_tokens": true
   }
]