File size: 21,492 Bytes
3c1955e bafc0de c3426b7 3c1955e 9b58bb3 c4844cd e92b03b ce25f02 a112afa bafc0de 5596b7b 0501ef0 c4844cd bab5c7c e0b72b6 bab5c7c 9b58bb3 bafc0de 3c1955e 9aeabfb c4844cd bafc0de c4844cd ce25f02 a112afa bafc0de c4844cd 0501ef0 c4844cd bafc0de e0b72b6 bab5c7c bafc0de bab5c7c 9b58bb3 bafc0de d7580f1 b3847d7 c4844cd b3847d7 ce25f02 a112afa c4844cd b3847d7 0501ef0 c4844cd b3847d7 e0b72b6 b3847d7 c4844cd bafc0de b3847d7 3c1955e c4844cd 3c1955e 5596b7b ce25f02 a112afa c4844cd 5596b7b 0501ef0 c4844cd bab5c7c e0b72b6 bab5c7c 9b58bb3 bafc0de c4844cd ce25f02 a112afa c4844cd 0501ef0 c4844cd bab5c7c e0b72b6 bab5c7c 9b58bb3 bafc0de bab5c7c c4844cd ce25f02 a112afa c4844cd 0501ef0 c4844cd bab5c7c e0b72b6 bab5c7c c4844cd bab5c7c c4844cd bafc0de c4844cd ce25f02 a112afa c4844cd 3be0909 c4844cd e0b72b6 c4844cd 9b58bb3 bafc0de ce25f02 697a7b6 a112afa bafc0de 0501ef0 bafc0de e0b72b6 bafc0de a112afa bafc0de a112afa bafc0de c411625 a112afa c411625 a112afa 697a7b6 a112afa c411625 0501ef0 c411625 a112afa e0b72b6 c411625 a112afa c411625 a112afa c411625 d2793ed 697a7b6 d2793ed 697a7b6 d2793ed 697a7b6 d2793ed 3be0909 d2793ed e0b72b6 d2793ed e92b03b 697a7b6 0501ef0 e92b03b 697a7b6 e0b72b6 697a7b6 d2793ed e0b72b6 0501ef0 e0b72b6 bab5c7c bafc0de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
[
{
"id": "Internal",
"model_title": "AI Assistant",
"model_file": "ggml-model-Q8_0.gguf",
"model_url": "https://",
"model_info_url": "https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B",
"model_avatar": "ava0",
"model_intention": "It's good for talking and casual writing. Most devices can run it well.",
"model_license": "license_llama2.txt",
"model_license_info": "Meta Llama 2 Community License Agreement",
"model_license_url": "https://ai.meta.com/llama/license/",
"model_description": "It is an AI assistant who can talk with you and help solve simple problems. It's based on a lite LLAMA2 model developed by Meta Inc.",
"developer": "Meta",
"developer_url": "https://ai.meta.com/llama/",
"category": "Talk & Inference",
"file_size": 1430,
"context" : 2048,
"max_context" : 2048,
"temp" : 0.6,
"prompt_format" : "<human>: {{prompt}}\n<bot>: ",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "HumanBot",
"is_ready": true,
"is_internal": true,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "LiteLlama-460M-1T-Q8",
"model_title": "LiteLlama",
"model_file": "LiteLlama-460M-1T-Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/ahxt/LiteLlama-460M-1T",
"model_avatar": "logo_litellama",
"model_intention": "This is a 460 parameters' very small model for test purpose only",
"model_license": "license_llama2.txt",
"model_license_info": "Meta Llama 2 Community License Agreement",
"model_license_url": "https://ai.meta.com/llama/license/",
"model_description": "It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.",
"developer": "Xiaotian Han from Texas A&M University",
"developer_url": "https://huggingface.co/ahxt/LiteLlama-460M-1T",
"category": "Test",
"file_size": 493,
"context" : 1024,
"max_context" : 1024,
"temp" : 0.6,
"prompt_format" : "<human>: {{prompt}}\n<bot>:",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "TinyLlama",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "tinyllama-1.1B-chat-Q8",
"model_title": "TinyLlama-1.1B-chat",
"model_file": "tinyllama-1.1B-chat-v1.0-Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"model_avatar": "logo_tinyllama",
"model_intention": "It's good for question & answer.",
"model_license": "license_llama2.txt",
"model_license_info": "Meta Llama 2 Community License Agreement",
"model_license_url": "https://ai.meta.com/llama/license/",
"model_description": "The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.",
"developer": "Zhang Peiyuan",
"developer_url": "https://github.com/jzhang38/TinyLlama",
"category": "Talk & Inference",
"file_size": 1170,
"context" : 4096,
"max_context" : 4096,
"temp" : 0.6,
"prompt_format" : "<|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "TinyLlama",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "mistral-7b-instruct-v0.2-Q8",
"model_title": "Mistral 7B v0.2",
"model_file": "mistral-7b-instruct-v0.2.Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
"model_avatar": "logo_mistralai",
"model_intention": "It's a 7B large model for Q&A purpose. But it requires a high-end device to run.",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.",
"developer": "Mistral AI",
"developer_url": "https://mistral.ai/",
"category": "Best Q&A for latest devices",
"file_size": 7695,
"context" : 4096,
"max_context" : 4096,
"temp" : 0.6,
"prompt_format" : "<s>[INST]{{prompt}}[/INST]</s>",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "Mistral",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "openchat-3.5-1210-Q8",
"model_title": "OpenChat 3.5",
"model_file": "mistral-7b-instruct-v0.2.Q8.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/openchat/openchat_3.5",
"model_avatar": "logo_openchat",
"model_intention": "It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.",
"developer": "OpenChat Team",
"developer_url": "https://openchat.team/",
"category": "Best Q&A for latest devices",
"file_size": 7695,
"context" : 4096,
"max_context" : 4096,
"temp" : 0.6,
"prompt_format" : "<s>[INST]{{prompt}}[/INST]</s>",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "Mistral",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "phi-2",
"model_title": "Phi-2",
"model_file": "phi-2.Q8_0.gguf",
"model_url": "https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/microsoft/phi-2",
"model_avatar": "logo_phi",
"model_intention": "It's a 2.7B model and is intended for QA, chat, and code purposes",
"model_license": "license_mit.txt",
"model_license_info": "The MIT License",
"model_license_url": "https://opensource.org/license/mit",
"model_description": "Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.",
"developer": "Microsoft",
"developer_url": "https://huggingface.co/microsoft/phi-2",
"category": "Math Q&A",
"file_size": 2960,
"context" : 4096,
"max_context" : 4096,
"temp" : 0.6,
"prompt_format" : "Instruct: {{prompt}}\nOutput:",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "PHI",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "yi-6b",
"model_title": "Yi 6B Chat",
"model_file": "yi-6b-chat-Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/01-ai/Yi-6B-Chat",
"model_avatar": "logo_yi",
"model_intention": "It's a 6B model and can understand English and Chinese. It's good for QA and Chat",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.",
"developer": "01.AI",
"developer_url": "https://01.ai/",
"category": "Multilingual",
"file_size": 6440,
"context" : 200000,
"max_context" : 200000,
"temp" : 0.6,
"prompt_format" : "<|im_start|>user\n<|im_end|>\n{{prompt}}\n<|im_start|>assistant\n",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "yi",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "gemma-2b",
"model_title": "Google Gemma 2B",
"model_file": "gemma-2b-it-q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/google/gemma-2b",
"model_avatar": "logo_google",
"model_intention": "It's a 2B large model for Q&A purpose. But it requires a high-end device to run.",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).",
"developer": "Google",
"developer_url": "https://huggingface.co/google",
"category": "Talk & Inference",
"file_size": 2669,
"context" : 8192,
"max_context" : 8192,
"temp" : 0.6,
"prompt_format" : "<bos><start_of_turn>user\n{{prompt}}<end_of_turn>\n<start_of_turn>model\n",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "gemma",
"n_batch" : 10,
"template_name" : "gemma",
"is_ready": false,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "starcoder2-3b",
"model_title": "StarCoder2 3B",
"model_file": "starcoder2-3b-instruct-gguf_Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true",
"model_info_url": "https://huggingface.co/bigcode/starcoder2-3b",
"model_avatar": "logo_starcoder",
"model_intention": "The model is good at 17 programming languages. It can help you resolve programming requirements",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens",
"developer": "Bigcode",
"developer_url": "https://www.bigcode-project.org/",
"category": "Programming Assistance",
"file_size": 3220,
"context" : 8192,
"max_context" : 8192,
"temp" : 0.6,
"prompt_format" : "### Instruction\n{{prompt}}### Response\n",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "starcoder",
"n_batch" : 10,
"template_name" : "starcoder",
"is_ready": false,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "chinese-tiny-llm-2b",
"model_title": "Chinese Tiny LLM 2B",
"model_file": "chinese-tiny-llm-2b-Q8_0.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true",
"model_info_url": "https://chinese-tiny-llm.github.io/",
"model_avatar": "logo_mapai",
"model_intention": "这是一个参数规模2B的中文模型,具有很好的中文理解和应答能力",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。",
"developer": "Multimodal Art Projection",
"developer_url": "https://m-a-p.ai/",
"category": "Multilingual",
"file_size": 2218,
"context" : 4096,
"max_context" : 4096,
"temp" : 0.6,
"prompt_format" : "<|im_start|>user\n{{prompt}}\n<|im_end|>\n<|im_start|>assistant\n",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "chatml",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "dolphin-2.8-mistral-7b-v02",
"model_title": "Dophin 2.8 Mistralv02 7B",
"model_file": "dolphin-2.8-mistral-7b-v02-Q2_K.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true",
"model_info_url": "https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02",
"model_avatar": "logo_dolphin",
"model_intention": "It's a uncensored and good skilled English modal best for high performance iPhone, iPad & Mac",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.",
"developer": "Eric Hartford and Cognitive Computations",
"developer_url": "https://erichartford.com/",
"category": "Best Q&A for latest devices",
"file_size": 2728,
"context" : 16384,
"max_context" : 16384,
"temp" : 0.6,
"prompt_format" : "<|im_start|>user\n{{prompt}}\n<|im_end|>\n<|im_start|>assistant\n",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "chatml",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
},
{
"id": "WizardLM-2-7B.Q3_K_M",
"model_title": "WizardLM-2 7B",
"model_file": "WizardLM-2-7B.Q3_K_M.gguf",
"model_url": "https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/WizardLM-2-7B.Q3_K_M.gguf?download=true",
"model_info_url": "https://huggingface.co/MaziyarPanahi/WizardLM-2-7B-GGUF",
"model_avatar": "logo_phi",
"model_intention": "It's a state-of-the-art large language model with improved performance on complex chat, multilingual, reasoning and agent.",
"model_license": "license_apache2.txt",
"model_license_info": "APACHE LICENSE, VERSION 2.0",
"model_license_url": "https://www.apache.org/licenses/LICENSE-2.0",
"model_description": "The WizardLM-2 is one of the next generation state-of-the-art large language models, which have improved performance on complex chat, multilingual, reasoning and agent.",
"developer": "Eric Hartford and Cognitive Computations",
"developer_url": "https://huggingface.co/collections/microsoft/wizardlm-661d403f71e6c8257dbd598a",
"category": "Best Q&A for latest devices",
"file_size": 3519,
"context" : 32768,
"max_context" : 32768,
"temp" : 0.6,
"prompt_format" : "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. \nUSER: {{prompt}}\nASSISTANT: ",
"top_k" : 5,
"top_p" : 0.9,
"model_inference" : "llama",
"n_batch" : 10,
"template_name" : "chatml",
"is_ready": true,
"is_internal": false,
"use_metal": true,
"mlock": false,
"mmap": true,
"repeat_last_n": 64,
"repeat_penalty": 1.2,
"add_bos_token": true,
"add_eos_token": false,
"parse_special_tokens": true
}
]
|