File size: 1,599 Bytes
e4b19f9
 
 
 
 
 
 
 
 
450418e
 
a34beab
 
e4b19f9
 
 
 
 
 
 
 
281ebe1
 
 
 
 
 
 
 
 
 
 
e4b19f9
 
 
a34beab
e4b19f9
 
 
 
 
 
 
a34beab
e4b19f9
 
 
 
 
 
 
 
 
 
 
 
8b01d33
28e1c63
e4b19f9
 
28e1c63
e4b19f9
 
450418e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
model-index:
- name: results
  results: []
datasets:
- xonic48/amazon_review_multi
language:
- en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0001
- eval_model_preparation_time: 0.0049
- eval_rouge1: 99.9541
- eval_rouge2: 87.8299
- eval_rougeL: 99.9541
- eval_rougeLsum: 99.9541
- eval_runtime: 2.9907
- eval_samples_per_second: 22.068
- eval_steps_per_second: 3.009
- step: 0

## Model description

We have fine tuned  google/mt5-small model on xonic48 amazon review data

## Intended uses & limitations

More information needed

## Training and evaluation data

We reduced the dataset to 20%, and selected data in english language, and then filtered it for book reviews. 

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3