File size: 1,599 Bytes
e4b19f9 450418e a34beab e4b19f9 281ebe1 e4b19f9 a34beab e4b19f9 a34beab e4b19f9 8b01d33 28e1c63 e4b19f9 28e1c63 e4b19f9 450418e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
library_name: transformers
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
model-index:
- name: results
results: []
datasets:
- xonic48/amazon_review_multi
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0001
- eval_model_preparation_time: 0.0049
- eval_rouge1: 99.9541
- eval_rouge2: 87.8299
- eval_rougeL: 99.9541
- eval_rougeLsum: 99.9541
- eval_runtime: 2.9907
- eval_samples_per_second: 22.068
- eval_steps_per_second: 3.009
- step: 0
## Model description
We have fine tuned google/mt5-small model on xonic48 amazon review data
## Intended uses & limitations
More information needed
## Training and evaluation data
We reduced the dataset to 20%, and selected data in english language, and then filtered it for book reviews.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3 |