File size: 1,463 Bytes
59f0c4b
 
 
 
 
 
 
 
6eee589
 
 
a14f912
59f0c4b
a14f912
 
 
 
 
d2b7292
 
 
961d6e2
 
 
a14f912
59f0c4b
 
6eee589
 
 
 
 
 
 
 
59f0c4b
6eee589
59f0c4b
6eee589
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
language:
- en
tags:
- flux
- diffusers
- lora
- replicate
base_model: black-forest-labs/FLUX.1-dev
pipeline_tag: text-to-image
instance_prompt: '2004'
widget:
- text: a bad 2004 photo, harsh flash
  output:
    url: images/example_calk81u89.png
- text: a bad 2004 photo of a living room interior, harsh flash
  output:
    url: images/example_t9zz1xby3.png
- text: a bad 2004 photo of a car, harsh flash
  output:
    url: images/example_tdyzalbwe.png

---

# Flux 2004

<Gallery />

Run on Replicate:

https://replicate.com/fofr/flux-2004

Trained on Replicate using:

https://replicate.com/ostris/flux-dev-lora-trainer/train


## Trigger words

You should use `2004` to trigger the image generation.


## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)

```py
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('fofr/flux-2004', weight_name='lora.safetensors')
image = pipeline('your prompt').images[0]
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)