File size: 4,456 Bytes
40e02d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
license: llama3
tags:
- axolotl
- generated_from_trainer
model-index:
- name: l3bgi-sft-qlora-r64
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
# Allow cli options to override these settings.
strict: false
# Base model settings.
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tokenizer_config: meta-llama/Meta-Llama-3-8B-Instruct
model_type: AutoModelForCausalLM
# Wandb settings
wandb_entity: collinear
wandb_project: template-training
wandb_name: l3smi-sft-qlora-r64
# Output settings
save_safetensors: true
hub_model_id: fozziethebeat/l3bgi-sft-qlora-r64
dataset_prepared_path: data/l3bgi-sft-qlora-r64
output_dir: models/l3bgi-sft-qlora-r64
# Data format settings
chat_template: llama3
datasets:
- path: fozziethebeat/alpaca_messages_2k_test
split: train
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
test_datasets:
- path: fozziethebeat/alpaca_messages_2k_test
split: test
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
# Data packing settings
sequence_len: 512
train_on_inputs: false
pad_to_sequence_len: true
group_by_length: false
sample_packing: false
eval_sample_packing: false
# Adapter settings
adapter: qlora
lora_model_dir:
load_in_8bit: false
load_in_4bit: true
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
# Computation Format settings
bf16: true
fp16:
tf32: false
# Trainer settings
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 1e-5
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
#flash_attention: true
warmup_steps: 10
eval_table_size:
eval_max_new_tokens: 128
evals_per_epoch: 4
saves_per_epoch: 1
debug:
weight_decay: 0.01
special_tokens:
pad_token: <|end_of_text|>
deepspeed:
fsdp:
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/collinear/template-training/runs/pav37wt6)
# l3bgi-sft-qlora-r64
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0220
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.0859 | 0.0022 | 1 | 1.3374 |
| 0.9847 | 0.2497 | 111 | 1.1122 |
| 1.203 | 0.4994 | 222 | 1.0451 |
| 1.3916 | 0.7492 | 333 | 1.0307 |
| 0.7893 | 0.9989 | 444 | 1.0251 |
| 1.0244 | 1.2486 | 555 | 1.0228 |
| 0.6814 | 1.4983 | 666 | 1.0221 |
| 0.9408 | 1.7480 | 777 | 1.0224 |
| 1.0832 | 1.9978 | 888 | 1.0220 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.43.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |