--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft license: llama3 tags: - axolotl - generated_from_trainer model-index: - name: l3bgi-sft-qlora-r64 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml # Allow cli options to override these settings. strict: false # Base model settings. base_model: meta-llama/Meta-Llama-3-8B-Instruct tokenizer_config: meta-llama/Meta-Llama-3-8B-Instruct model_type: AutoModelForCausalLM # Wandb settings wandb_entity: collinear wandb_project: template-training wandb_name: l3smi-sft-qlora-r64 # Output settings save_safetensors: true hub_model_id: fozziethebeat/l3bgi-sft-qlora-r64 dataset_prepared_path: data/l3bgi-sft-qlora-r64 output_dir: models/l3bgi-sft-qlora-r64 # Data format settings chat_template: llama3 datasets: - path: fozziethebeat/alpaca_messages_2k_test split: train type: chat_template chat_template: llama3 field_messages: messages message_field_role: role message_field_content: content test_datasets: - path: fozziethebeat/alpaca_messages_2k_test split: test type: chat_template chat_template: llama3 field_messages: messages message_field_role: role message_field_content: content # Data packing settings sequence_len: 512 train_on_inputs: false pad_to_sequence_len: true group_by_length: false sample_packing: false eval_sample_packing: false # Adapter settings adapter: qlora lora_model_dir: load_in_8bit: false load_in_4bit: true lora_r: 64 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj # Computation Format settings bf16: true fp16: tf32: false # Trainer settings gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 2 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 1e-5 loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: #flash_attention: true warmup_steps: 10 eval_table_size: eval_max_new_tokens: 128 evals_per_epoch: 4 saves_per_epoch: 1 debug: weight_decay: 0.01 special_tokens: pad_token: <|end_of_text|> deepspeed: fsdp: ```

[Visualize in Weights & Biases](https://wandb.ai/collinear/template-training/runs/pav37wt6) # l3bgi-sft-qlora-r64 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0220 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0859 | 0.0022 | 1 | 1.3374 | | 0.9847 | 0.2497 | 111 | 1.1122 | | 1.203 | 0.4994 | 222 | 1.0451 | | 1.3916 | 0.7492 | 333 | 1.0307 | | 0.7893 | 0.9989 | 444 | 1.0251 | | 1.0244 | 1.2486 | 555 | 1.0228 | | 0.6814 | 1.4983 | 666 | 1.0221 | | 0.9408 | 1.7480 | 777 | 1.0224 | | 1.0832 | 1.9978 | 888 | 1.0220 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1