File size: 2,955 Bytes
1c946f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: childes_mlm_unmasking_sent_13
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# childes_mlm_unmasking_sent_13

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1577

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 13
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100000
- training_steps: 400000

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| No log        | 0.0741 | 2000  | 5.4637          |
| 6.1476        | 0.1481 | 4000  | 4.7186          |
| 6.1476        | 0.2222 | 6000  | 4.3520          |
| 4.4471        | 0.2963 | 8000  | 3.9931          |
| 4.4471        | 0.3703 | 10000 | 3.7630          |
| 3.8939        | 0.4444 | 12000 | 3.6285          |
| 3.8939        | 0.5185 | 14000 | 3.4888          |
| 3.6013        | 0.5926 | 16000 | 3.4438          |
| 3.6013        | 0.6666 | 18000 | 3.3501          |
| 3.4806        | 0.7407 | 20000 | 3.3621          |
| 3.4806        | 0.8148 | 22000 | 3.3173          |
| 3.4164        | 0.8888 | 24000 | 3.2997          |
| 3.4164        | 0.9629 | 26000 | 3.2795          |
| 3.3837        | 1.0370 | 28000 | 3.2958          |
| 3.3837        | 1.1110 | 30000 | 3.2695          |
| 3.3341        | 1.1851 | 32000 | 3.2437          |
| 3.3341        | 1.2592 | 34000 | 3.2345          |
| 3.332         | 1.3333 | 36000 | 3.2152          |
| 3.332         | 1.4073 | 38000 | 3.2175          |
| 3.3094        | 1.4814 | 40000 | 3.2130          |
| 3.3094        | 1.5555 | 42000 | 3.2210          |
| 3.3162        | 1.6295 | 44000 | nan             |
| 3.3162        | 1.7036 | 46000 | 3.1529          |
| 3.3268        | 1.7777 | 48000 | 3.1837          |
| 3.3268        | 1.8517 | 50000 | 3.1856          |
| 3.3103        | 1.9258 | 52000 | 3.1568          |
| 3.3103        | 1.9999 | 54000 | 3.1903          |
| 3.2876        | 2.0740 | 56000 | 3.1443          |
| 3.2876        | 2.1480 | 58000 | 3.1751          |
| 3.3045        | 2.2221 | 60000 | 3.1543          |
| 3.3045        | 2.2962 | 62000 | 3.1577          |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1