--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba metrics: - wer model-index: - name: whisper-large-v3-pt-1000h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default type: fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba args: default metrics: - name: Wer type: wer value: 0.11132023872721715 --- # whisper-large-v3-pt-1000h This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default dataset. It achieves the following results on the evaluation set: - Loss: 0.5576 - Wer: 0.1113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - training_steps: 82000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2717 | 0.39 | 10000 | 0.4143 | 0.1341 | | 0.2646 | 0.79 | 20000 | 0.4141 | 0.1284 | | 0.2244 | 1.18 | 30000 | 0.5361 | 0.1253 | | 0.2056 | 1.57 | 40000 | 0.4714 | 0.1223 | | 0.2034 | 1.97 | 50000 | 0.4937 | 0.1195 | | 0.1717 | 2.36 | 60000 | 0.5127 | 0.1178 | | 0.1692 | 2.75 | 70000 | 0.6040 | 0.1146 | | 0.121 | 3.15 | 80000 | 0.5361 | 0.1130 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1 - Datasets 2.18.1.dev0 - Tokenizers 0.15.2