File size: 13,769 Bytes
a5f11c3
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c0d9aefcd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c0d9aefcdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c0d9aefce50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c0d9aefcee0>", "_build": "<function ActorCriticPolicy._build at 0x7c0d9aefcf70>", "forward": "<function ActorCriticPolicy.forward at 0x7c0d9aefd000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c0d9aefd090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c0d9aefd120>", "_predict": "<function ActorCriticPolicy._predict at 0x7c0d9aefd1b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c0d9aefd240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c0d9aefd2d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c0d9aefd360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c0d9b0ac0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1705392664553391048, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDsnb1IJ6i6fSjwN5P05jIqpCs5OcQJtwAAgD8AAIA/jYqaPZIAjzzKdcc9GZAGvofPmT2j8Rs8AAAAAAAAAAAzfvs8e9aTug7KabsliH84kkowOvqM/zkAAIA/AACAPwCo4Dw9Hki7I8ncuwaoyTyFBGo8ywSrvQAAgD8AAIA/ZgeivHuGmLo1QEg7hC++NgjgijrAjme6AACAPwAAgD+AaZe9Jt6nP3jj+r3eGZa+mtSovarhJrwAAAAAAAAAAGZbrjzsGZ25LMkyO/EZGjZZvE679v5VugAAgD8AAIA/zTx9vOGQgboJZBK4j1kXs6BuZjiQ0So3AACAPwAAgD8ao+m9gHWyP2BJsL6cH4i+7tg1vs/rSr4AAAAAAAAAAFpQzj3lKq8+wmkYvk9WU75+nVS9XcKEPQAAAAAAAAAAmjPhvfZsKrpGvyS47984s10ylDumh0M3AACAPwAAAADNFm89SEeCumpmMTlE65Uz7uNTutl4SrgAAIA/AACAPzOnuruPBjS6RqKBM3EBeC6cmZO5LZnJswAAgD8AAIA/mqUcvOGknbpy2Je7/NSLNi9LbDr2bfq1AACAPwAAgD+mqke+rrvjOwj8crvjuh85GZ96vQaSjzoAAIA/AACAP+Z0Tr2FA/y5+ITnOvz9NTY3nIU68FEHugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFV/q0tyxRmMAWyUTegDjAF0lEdAlaRmsV+I/XV9lChoBkdAZ64jRD1GsmgHTegDaAhHQJWqQREnb7F1fZQoaAZHQGUNHPu5SWJoB03oA2gIR0CVrCe9SMtLdX2UKGgGR0BgA6BbwBo3aAdN6ANoCEdAla4ecDr7f3V9lChoBkdAZUq1og3cYmgHTegDaAhHQJW1on6VMVV1fZQoaAZHQFyL5aNdZ7poB03oA2gIR0CVzM1DBuXNdX2UKGgGR0Bkl3aSLZSOaAdN6ANoCEdAldAYi5d4V3V9lChoBkdARFQ1LrX18WgHTSQBaAhHQJXQjZ6D5CZ1fZQoaAZHQGD32ZRbbDdoB03oA2gIR0CV3KPXkHUudX2UKGgGR0Bg7nkiliz+aAdN6ANoCEdAld8SeNDMNnV9lChoBkdAXfwbNr0rb2gHTegDaAhHQJXhCc0+C9R1fZQoaAZHQGi4Y82aUiZoB03oA2gIR0CV5zoIOYpldX2UKGgGR0BjH2/rSmZWaAdN6ANoCEdAle6hQBPsRnV9lChoBkdAW9VXOnl4kmgHTegDaAhHQJXyWCWeHzp1fZQoaAZHQGBUQljVhCtoB03oA2gIR0CV86X9itq6dX2UKGgGR0BbNxEORT0haAdN6ANoCEdAlfWuhoM8YHV9lChoBkdAZGxVurIYFmgHTegDaAhHQJX2/xlQMx51fZQoaAZHQGK1i/O+qR5oB03oA2gIR0CV9y1qnFYMdX2UKGgGR0Blf8hV2icoaAdN6ANoCEdAlfwHX2/SIHV9lChoBkdAYu+5imVJMGgHTegDaAhHQJX9oehf0Ep1fZQoaAZHQF7EHJcPe55oB03oA2gIR0CWB3jVx0dSdX2UKGgGR0Bike9L6DXfaAdN6ANoCEdAliDiYb83uXV9lChoBkdAZw8twJgLJGgHTegDaAhHQJYj/6oESuh1fZQoaAZHQF05vb48EFJoB03oA2gIR0CWJGr1M/QjdX2UKGgGR0BjW2Z3LV4HaAdN6ANoCEdAliypHI6sAHV9lChoBkdAYLj8NQTEi2gHTegDaAhHQJYuG8yvcJt1fZQoaAZHQGTSgRChN/RoB03oA2gIR0CWL6WHDaXbdX2UKGgGR0BH3sKTjebeaAdL5WgIR0CWMDxesxO+dX2UKGgGR0BpGLdi2DxtaAdN6ANoCEdAljRk34sVcnV9lChoBkdAYpCdiDujRGgHTegDaAhHQJY56RPoFFF1fZQoaAZHQGeQKCxu89RoB03oA2gIR0CWPar6LwWndX2UKGgGR0BncerMkhRqaAdN6ANoCEdAlj7+DaoMrnV9lChoBkdAZUmj7hvR7mgHTegDaAhHQJZBHCyhSLt1fZQoaAZHQGTCb6YVqN9oB03oA2gIR0CWQoVM23rldX2UKGgGR0BkxvaSLZSOaAdN6ANoCEdAlkK8Xm/34HV9lChoBkdAQei2OQyRCGgHTRgBaAhHQJZFKIP9UCJ1fZQoaAZHQFuPBClabF1oB03oA2gIR0CWR6SGJvYOdX2UKGgGR0Bj+YB5ooNNaAdN6ANoCEdAlkkOCTUy6HV9lChoBkdAPhaSLZSNwWgHTRoBaAhHQJZNNMxoIv91fZQoaAZHQGVeFbmlqJxoB03oA2gIR0CWUcNcW0qpdX2UKGgGR0Bj3VnuiN83aAdN6ANoCEdAlme7rxAjZHV9lChoBkdAcsLn27FsHmgHTaMBaAhHQJZpFtcfNiZ1fZQoaAZHQGOxZzHS4ONoB03oA2gIR0CWawqbz9S/dX2UKGgGR0Bl4+dGy5ZsaAdN6ANoCEdAlnZzsQd0aXV9lChoBkdAYOlOpsGgSWgHTegDaAhHQJZ4q5sj3VV1fZQoaAZHQGOFRwQ176ZoB03oA2gIR0CWenOBDohZdX2UKGgGR0BhDcJUo8ZDaAdN6ANoCEdAlnsgNwzch3V9lChoBkdAZt3b1yvLYGgHTegDaAhHQJaGFFqi48V1fZQoaAZHQFAw+1Bt1p1oB00DAWgIR0CWiaH1OCXhdX2UKGgGR0BhZfsXzlLfaAdN6ANoCEdAlopTSPU8WHV9lChoBkdAZJdZ39rGi2gHTegDaAhHQJaMD/Khcqx1fZQoaAZHQGf9ac7QswtoB03oA2gIR0CWjVlKbrkbdX2UKGgGR0Bopsox59mZaAdN6ANoCEdAlo8uX7cfvHV9lChoBkdAY+tyMDOkcmgHTegDaAhHQJaRo5zYEnt1fZQoaAZHQGSnPicXm/5oB03oA2gIR0CWkwDYywfRdX2UKGgGR0BQAuruIAOsaAdL6mgIR0CWla/smfGudX2UKGgGR0Bj/0NH6MzeaAdN6ANoCEdAlpb8ir1dxHV9lChoBkdAMocVgx8D0WgHTQ8BaAhHQJaZ/5Lytmt1fZQoaAZHQGFswco6S1VoB03oA2gIR0CWmvt2cJ+ldX2UKGgGR0BkOSyOaOPvaAdN6ANoCEdAlp+8Co0hvHV9lChoBkdAcCru+yquKWgHTdcBaAhHQJagMRNATqV1fZQoaAZHQGK9YPf8/EBoB03oA2gIR0CWs46yjYZmdX2UKGgGR0BkTYd6sySFaAdN6ANoCEdAlrUzQJHAh3V9lChoBkdAbDkEKVpsXWgHTUIDaAhHQJa3b3j+7191fZQoaAZHQGHJCDmKZUloB03oA2gIR0CWvTajvd/KdX2UKGgGR0BkA3XiBGx2aAdN6ANoCEdAlr6+0gKWs3V9lChoBkdAcCdMi8nNPmgHTb8BaAhHQJbFPyFwkxB1fZQoaAZHQHDDRGMGX5ZoB01JAWgIR0CWylJpFkQPdX2UKGgGR0BkClrwe/5+aAdN6ANoCEdAls0VklNUO3V9lChoBkdAbOafbKzRhWgHTRgDaAhHQJbPizsyBTZ1fZQoaAZHQGV09yDIzWRoB03oA2gIR0CW0ylA/s3RdX2UKGgGR0BhfGBtk4FSaAdN6ANoCEdAltf63iJfpnV9lChoBkdAZVRQoCuEEmgHTegDaAhHQJbbxuivgWJ1fZQoaAZHQHKbhd2PkrBoB03EAmgIR0CW4FqslsxgdX2UKGgGR0Bj7KdpZfUnaAdN6ANoCEdAluFeZG8VYnV9lChoBkdAX9h+w1R+B2gHTegDaAhHQJbi2eFtbcJ1fZQoaAZHQGDzKvvBrN5oB03oA2gIR0CW5kDbrTpgdX2UKGgGR0BfM1aW5YozaAdN6ANoCEdAluy2fkFOf3V9lChoBkdAZm0dyT6i02gHTegDaAhHQJbtMpSaVlh1fZQoaAZHQGSVj+irT6VoB03oA2gIR0CW7e0QbuMNdX2UKGgGR0BtGDMJQcghaAdNKANoCEdAlwWjin5zo3V9lChoBkdAbTF9ph4MW2gHTc4CaAhHQJcIaDtgKF91fZQoaAZHQGSMw1zhgmZoB03oA2gIR0CXCYtdAxBWdX2UKGgGR0Bj+vxri2lVaAdN6ANoCEdAlwt24mTkhnV9lChoBkdAOEO0gKWszWgHS/doCEdAlwxLILgGbHV9lChoBkdATWcZgogFHWgHTQMBaAhHQJcOuv+wTuh1fZQoaAZHQHB5SVObiIdoB03SAmgIR0CXE7VIqbz9dX2UKGgGR0Bmy0Gkep4saAdN6ANoCEdAlxbHL3bmEHV9lChoBkdAQjF8zAN5MWgHTQYBaAhHQJcYvErGza91fZQoaAZHQD5L752yLQ5oB0v3aAhHQJcZV5le4Td1fZQoaAZHQGV5nZ9NN8FoB03oA2gIR0CXGwhStNi6dX2UKGgGR0BhXLJGOMl1aAdN6ANoCEdAlx4lgx8D0XV9lChoBkdAa6koUBXCCWgHTWcDaAhHQJcg2VhTfix1fZQoaAZHQGTFuRkmQbNoB03oA2gIR0CXI+9Sde6adX2UKGgGR0BngKFdszl+aAdN6ANoCEdAlyjUR3/xUnV9lChoBkdAbwH40Mw1zmgHTXABaAhHQJcpo0GeMAF1fZQoaAZHQGEt05U96kZoB03oA2gIR0CXKlmOlwcYdX2UKGgGR0Bhh3NX5nDjaAdN6ANoCEdAly3H6uW8iHV9lChoBkdAZCsdhAnlXGgHTegDaAhHQJc1EGB4D9x1fZQoaAZHQECzvLHMlkZoB0vtaAhHQJc2oEIPbwl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}