--- license: apache-2.0 tags: - moe - mixtral - openchat/openchat-3.5-0106 - giux78/zefiro-7b-beta-ITA-v0.1 - azale-ai/Starstreak-7b-beta - gagan3012/Mistral_arabic_dpo - davidkim205/komt-mistral-7b-v1 - OpenBuddy/openbuddy-zephyr-7b-v14.1 - manishiitg/open-aditi-hi-v1 - VAGOsolutions/SauerkrautLM-7b-v1-mistral model-index: - name: Multilingual-mistral results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.38 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 55.53 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 40.26 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gagan3012/Multilingual-mistral name: Open LLM Leaderboard --- # Multilingual-mistral This model is a Mixure of Experts (MoE) made with [mergekit](https://github.com/cg123/mergekit) (mixtral branch). It uses the following base models: * [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) * [giux78/zefiro-7b-beta-ITA-v0.1](https://huggingface.co/giux78/zefiro-7b-beta-ITA-v0.1) * [azale-ai/Starstreak-7b-beta](https://huggingface.co/azale-ai/Starstreak-7b-beta) * [gagan3012/Mistral_arabic_dpo](https://huggingface.co/gagan3012/Mistral_arabic_dpo) * [davidkim205/komt-mistral-7b-v1](https://huggingface.co/davidkim205/komt-mistral-7b-v1) * [OpenBuddy/openbuddy-zephyr-7b-v14.1](https://huggingface.co/OpenBuddy/openbuddy-zephyr-7b-v14.1) * [manishiitg/open-aditi-hi-v1](https://huggingface.co/manishiitg/open-aditi-hi-v1) * [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-v1-mistral) ## 🧩 Configuration ```yamlbase_model: mistralai/Mistral-7B-Instruct-v0.2 dtype: bfloat16 experts: - positive_prompts: - chat - assistant - tell me - explain source_model: openchat/openchat-3.5-0106 - positive_prompts: - chat - assistant - tell me - explain source_model: giux78/zefiro-7b-beta-ITA-v0.1 - positive_prompts: - indonesian - indonesia - answer in indonesian source_model: azale-ai/Starstreak-7b-beta - positive_prompts: - arabic - arab - arabia - answer in arabic source_model: gagan3012/Mistral_arabic_dpo - positive_prompts: - korean - answer in korean - korea source_model: davidkim205/komt-mistral-7b-v1 - positive_prompts: - chinese - china - answer in chinese source_model: OpenBuddy/openbuddy-zephyr-7b-v14.1 - positive_prompts: - hindi - india - hindu - answer in hindi source_model: manishiitg/open-aditi-hi-v1 - positive_prompts: - german - germany - answer in german - deutsch source_model: VAGOsolutions/SauerkrautLM-7b-v1-mistral gate_mode: hidden ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "gagan3012/Multilingual-mistral" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_gagan3012__Multilingual-mistral) | Metric |Value| |---------------------------------|----:| |Avg. |62.79| |AI2 Reasoning Challenge (25-Shot)|62.29| |HellaSwag (10-Shot) |81.76| |MMLU (5-Shot) |61.38| |TruthfulQA (0-shot) |55.53| |Winogrande (5-shot) |75.53| |GSM8k (5-shot) |40.26|