Update README.md
Browse files
README.md
CHANGED
@@ -44,19 +44,19 @@ import torchaudio
|
|
44 |
from datasets import load_dataset
|
45 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
46 |
|
47 |
-
!wget https://www.openslr.org/resources/43/
|
48 |
-
!unzip
|
49 |
-
!ls
|
50 |
|
51 |
colnames=['path','sentence']
|
52 |
-
df = pd.read_csv('/content/
|
53 |
-
df['path'] = '/content/
|
54 |
|
55 |
train, test = train_test_split(df, test_size=0.1)
|
56 |
|
57 |
-
test.to_csv('/content/
|
58 |
|
59 |
-
test_dataset = load_dataset('csv', data_files='/content/
|
60 |
|
61 |
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
62 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
@@ -66,15 +66,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
66 |
# Preprocessing the datasets.
|
67 |
# We need to read the aduio files as arrays
|
68 |
def speech_file_to_array_fn(batch):
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
|
73 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
74 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
75 |
|
76 |
with torch.no_grad():
|
77 |
-
|
78 |
|
79 |
predicted_ids = torch.argmax(logits, dim=-1)
|
80 |
|
@@ -120,37 +120,38 @@ processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-khmer")
|
|
120 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-khmer")
|
121 |
model.to("cuda")
|
122 |
|
123 |
-
chars_to_ignore_regex = '[
|
124 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
125 |
|
126 |
# Preprocessing the datasets.
|
127 |
# We need to read the aduio files as arrays
|
128 |
def speech_file_to_array_fn(batch):
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
|
134 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
135 |
|
136 |
# Preprocessing the datasets.
|
137 |
# We need to read the aduio files as arrays
|
138 |
def evaluate(batch):
|
139 |
-
|
140 |
|
141 |
-
|
142 |
-
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
|
148 |
cer = load_metric("cer")
|
149 |
|
150 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
151 |
|
152 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"])))
|
153 |
-
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["text"])))
|
|
|
154 |
|
155 |
**Test Result**: 24.96 %
|
156 |
|
|
|
44 |
from datasets import load_dataset
|
45 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
46 |
|
47 |
+
!wget https://www.openslr.org/resources/43/km_kh_male.zip
|
48 |
+
!unzip km_kh_male.zip
|
49 |
+
!ls km_kh_male
|
50 |
|
51 |
colnames=['path','sentence']
|
52 |
+
df = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\t',header=None,names = colnames)
|
53 |
+
df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav'
|
54 |
|
55 |
train, test = train_test_split(df, test_size=0.1)
|
56 |
|
57 |
+
test.to_csv('/content/km_kh_male/line_index_test.csv')
|
58 |
|
59 |
+
test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train')
|
60 |
|
61 |
processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
62 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali")
|
|
|
66 |
# Preprocessing the datasets.
|
67 |
# We need to read the aduio files as arrays
|
68 |
def speech_file_to_array_fn(batch):
|
69 |
+
\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
70 |
+
\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
71 |
+
\\\\\\\\treturn batch
|
72 |
|
73 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
74 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
75 |
|
76 |
with torch.no_grad():
|
77 |
+
\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
78 |
|
79 |
predicted_ids = torch.argmax(logits, dim=-1)
|
80 |
|
|
|
120 |
model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-khmer")
|
121 |
model.to("cuda")
|
122 |
|
123 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
|
124 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
125 |
|
126 |
# Preprocessing the datasets.
|
127 |
# We need to read the aduio files as arrays
|
128 |
def speech_file_to_array_fn(batch):
|
129 |
+
\tbatch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower()
|
130 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
131 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
132 |
+
\treturn batch
|
133 |
|
134 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
135 |
|
136 |
# Preprocessing the datasets.
|
137 |
# We need to read the aduio files as arrays
|
138 |
def evaluate(batch):
|
139 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
140 |
|
141 |
+
\twith torch.no_grad():
|
142 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
143 |
|
144 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
145 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
146 |
+
\treturn batch
|
147 |
|
148 |
cer = load_metric("cer")
|
149 |
|
150 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
151 |
|
152 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"])))
|
153 |
+
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["text"])))
|
154 |
+
```
|
155 |
|
156 |
**Test Result**: 24.96 %
|
157 |
|